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Preface

The Committee for Advancing Software-Intensive Systems Producibility was appointed by the 
National Research Council (NRC) and convened under the auspices of the NRC’s Computer Science and 
Telecommunications Board (CSTB) to assess the nature of the national investment in software research 
and, in particular, to consider ways to revitalize the knowledge base needed to design, produce, and 
employ software-intensive systems for tomorrow’s defense needs. The statement of task is provided 
in Box P.1.

This report contemplates Department of Defense (DoD) needs and priorities for software research 
and suggests a research agenda and related actions. This is the final report of the committee, and it 
builds on two prior reports—Summary of a Workshop on Software Intensive Systems and Uncertainty at 
Scale� and Preliminary Observations on DoD Software Research Needs and Priorities.� This report draws on 
the briefings listed in Appendix A.

The committee considered four sets of questions: 

•	 To what extent is software capability significant for the DoD? Is it becoming more or less signifi-
cant and strategic in systems development? 

•	 Will the advances in software producibility needed by the DoD emerge unaided from industry 
at a pace sufficient to meet evolving defense requirements? 

•	 What are the opportunities for the DoD to make more effective use of emerging technology to 
improve software capability and software producibility?

•	 In which technology areas should the DoD invest in research to advance defense software capa-
bility and producibility?

Chapter 1 of this report addresses the first two of these questions. It discusses the essential and evolv-
ing role of software in defense systems and the distinctive and unusual characteristics of the software 

�  National Research Council (NRC), 2007, Summary of a Workshop on Software Intensive Systems and Uncertainty at Scale, Wash-
ington, DC: National Academies Press. Available online at http://www.nap.edu/catalog.php?record_id=11936. Last accessed 
August 10, 2010.

�  NRC, 2008, Preliminary Observations on DoD Software Research Needs and Priorities: A Letter Report, Washington, DC: National 
Academies Press. Available online at http://www.nap.edu/catalog.php?record_id=12172. Last accessed August 10, 2010
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used in such systems. The chapter also contemplates the extent to which the DoD can rely on industry 
to innovate at a rate fast enough to allow it to fully meet future defense software requirements. 

Chapters 2, 3, and 4 of this report focus on three principal clusters of challenges to software produc-
ibility wherein the DoD has particularly unusual needs or “leading demand.” These chapters address 
the third question presented in the statement of task and describe process management for innovative 
software systems development (Chapter 2), architectural leadership for large-scale software-intensive 
systems (Chapter 3), and the need to take a strategic approach to assurance (Chapter 4). These chapters, 
taken together, address the core features of what we mean by software producibility—the capacity to 
design, produce, assure, and evolve software-intensive systems in a predictable manner while effectively 
managing risk, cost, schedule, quality, and complexity.

Chapter 5 discusses the value of research in enhancing software producibility for the DoD. It 
addresses the role of academic research, the synergy between industry and academic research, and 
the impact of past investments. It then tackles the fourth question and offers a seven-part agenda for 
advancing DoD software capability: architecture, assurance, process and economic models, require-
ments, language and tools, cyber-physical systems, and human-systems interaction.

The committee thanks all those who participated in its workshops and contributed to its delibera-
tions (Appendix A). The committee would also like to thank the Computer Science and Telecommu-
nications Board staff, including Enita Williams, Jon Eisenberg, Lynette Millett, Joan Winston, and Eric 
Whitaker, who have ably managed the project and coordinated the team effort through three separate 
reports. Enita Williams and Jon Eisenberg deserve special thanks and appreciation for their heroic effort 
in the preparation and editing of this final report, which would not have been possible without their 
highly capable support and collaboration.

William L. Scherlis, Chair
Committee for Advancing Software-Intensive Systems Producibility

Box P.1 
Statement of Task

This study will bring together academic and industry software systems researchers, software and 
software tool vendors (suppliers), and systems integrators who comprise the community of skills 
required for future successes in complex software-intensive systems required by the Department of 
Defense (DoD). They will:

(1) Assess the emerging situation with respect to the national investment in relevant software 
research, the present state of and future requirements for tools for software production, testing and 
maintenance, and the adequacy of human resources;

(2) Examine the needs, relationships, and interdependencies expected of future DoD software re-
search, development and maintenance needs, and consider what advances are needed for continuous 
improvements in the design, production, and evolution of DoD software-intensive systems;

(3) Make recommendations to responsible agency, executive branch, and legislative officials, and 
to the software technical community, about how to improve the present state of affairs and achieve 
future goals.
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Summary

The National Research Council’s Committee for Advancing Software-Intensive Systems Produc-
ibility was commissioned by the Office of the Secretary of Defense (OSD) to examine the nature of 
the national investment in software research and ways to revitalize the knowledge base needed to 
design, produce, and employ software-intensive systems for tomorrow’s defense needs. This report 
contemplates Department of Defense needs and priorities (Chapter 1) for software producibility—that is, 
the capacity to design, produce, assure, and evolve innovative software-intensive systems in a predict-
able manner while effectively managing risk, cost, schedule, and complexity. It suggests feasible actions 
related to software process and measurement (Chapter 2), architecture (Chapter 3), and assurance (Chapter 
4), and it suggests a research agenda (Chapter 5) that focuses on issues critical to Department of Defense 
(DoD) software capability. 

Box S.1 summarizes several of the key messages of the findings and recommendations by showing 
how they address eight “myths” regarding software producibility. The key findings and recommenda-
tions of the committee are presented in this Summary, and additional findings and recommendations 
are offered in subsequent chapters. A complete set is presented in Box S.2.

This final project report builds on two prior reports—the discussion of technical and organizational 
issues in Summary of a Workshop on Software Intensive Systems and Uncertainty at Scale� and a subsequent 
letter report focused on the rationale for investment in software research.�

�  National Research Council (NRC), 2007, Summary of a Workshop on Software Intensive Systems and Uncertainty at Scale, Wash-
ington, DC: National Academies Press. Available online at http://www.nap.edu/catalog.php?record_id=11936. Last accessed 
August 10, 2010.

�  NRC, 2008, Preliminary Observations on DoD Software Research Needs and Priorities: A Letter Report, Washington, DC: National 
Academies Press. Available online at http://www.nap.edu/catalog.php?record_id=12172. Last accessed August 10, 2010 
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1.  Recognize the pivotal role of DoD software innovation

The continued increase in the DoD’s dependency on software is well documented by the Defense 
Science Board (DSB) and in multiple National Academies reports.�,�,�,� This increase amounts to an order 
of magnitude of lines of software code every decade, and it is a natural consequence of the distinctive 
advantages of software as an engineering medium. Software is uniquely unbounded and flexible, can 

�  Defense Science Board (DSB), September 2007, Report of the Defense Science Board Task Force on Mission Impact of Foreign Influence 
on DoD Software, Washington, DC: Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics. Available 
online at http://stinet.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA473661. Last accessed August 
20, 2010. 

�  DSB, November 2000, Report of the Defense Science Board Task Force on Defense Software, Washington, DC: Office of the Under 
Secretary of Defense for Acquisition, Technology, and Logistics. Available online at http://oai.dtic.mil/oai/oai?verb=getRecord
&metadataPrefix=html&identifier=ADA385923. Last accessed August 20, 2010.

�  National Research Council (NRC), 2010, Achieving Effective Acquisition of Information Technology in the Department of Defense, 
Washington, DC: National Academies Press. Available online at http://www.nap.edu/catalog.php?record_id=12823. Last ac-
cessed August 20, 2010.

�  NRC, 1999, Realizing the Potential of C4I: Fundamental Challenges,Washington, DC: National Academy Press. Available online 
at http://www.nap.edu/catalog.php?record_id=6457. Last accessed August 20, 2010.

Box S.1 
Eight Myths About Defense Software Producibility

1.	 The DoD’s software producibility challenges are predominantly challenges of management and 
process but not of technology. 

	 •	 (See Findings 1-1, 1-3, 1-4, 2-5, 4-2, 5-2 and Recommendations 1-1, 4-2, 5-1.)
2.	 The DoD and its contractors can rely on industry to innovate at a rate fast enough to solve the 

DoD’s hard technical problems and to stay ahead of its adversaries.
	 •	 (See Findings 1-3, 1-4 and Recommendation 1-1.)
3.	 Software technology is approaching a plateau, which diminishes the need to invest in technol-

ogy innovation.
	 •	 (See Findings 1-5, 5-2 and Recommendations 4-2, 5-1.)
4.	 The software research community is doing potentially relevant theoretical work, but it has not 

led to advances of compelling importance to the DoD. 
	 •	 (See Finding 5-1.)
5.	 We have not yet developed effective mechanisms to mitigate the risks, particularly those related 

to scale and adoptability, associated with the transition to practice of innovative software-development 
technologies. 

	 •	 (See Findings 3-2, 3-4, 3-5, 4-2, 4-3 and Recommendations 2-1, 3-4, 4-2, 4-3.)
6.	 We will never create perfectly reliable and secure software, so we should focus primarily on 

provenance—trusted sources—rather than attempting to achieve assurance through improvements in 
practices and tools for evaluating artifacts directly.

	 •	 (See Findings 4-1, 4-2 and Recommendations 4-1, 4-3.)
7.	 There is sufficient software research already underway, sponsored primarily by NSF and other 

basic science agencies, to meet the DoD’s software needs. 
	 •	 (See Recommendations 1-1, 5-1.)
8.	 Earned value management approaches based on code accumulation are a sufficient basis for 

managing software development programs, including incremental iterative development. 
	 •	 (See Findings 2-3, 2-4 and Recommendations 2-1, 2-2.) 
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be delivered and upgraded electronically and remotely, and has the potential to be rapidly adapted 
to changing threats, operating environments, and platform technologies. Because it is unconstrained 
by traditional physical engineering limitations, the principal limits on what we can accomplish with 
software derive from human intellectual capacity to conceptualize and understand systems, to build 
tools to develop and manage them, and to provide assurance regarding critical functional and quality 
attributes. 

The same reports also indicate that the DoD would benefit from strategic steps to improve its abil-
ity to design, develop, and assure complex software. Software not only is expanding in use but also is 
shifting into a more strategic and fundamental role in diverse systems. A vital question is how the DoD 
can ensure that it will be able to meet its software needs now and into the future. 

Finding 1-1: Software has become essential to a vast range of military system capabilities and opera-
tions, and its role is continuing to deepen and broaden, including interlinking diverse system ele-
ments. This creates both benefits and risks. 

Compounding these issues are the growing size, complexity, and geography of the supply chain 
structure for major software systems. This is a consequence of two powerful forces—the advance of 
technology that has enabled greater software modularization, and the globalization of software devel-
opment activity. Although the United States continues to retain innovation leadership in software areas 
important to the DoD, there are factors that could cause the loss of that leadership. 

Some observers have speculated that software and information technology generally are reaching 
a plateau of capability and performance. This is a false and dangerous speculation—the capability and 
the complexity of hardware� and software systems are both rising at an accelerating rate. 

Finding 1-5: It is dangerous to conclude that we are reaching a plateau in capability and technology 
for software producibility. To avoid loss of leadership, the DoD will need to become more fully 
engaged in the innovative processes related to software producibility.

A key question addressed by the committee is to what extent the DoD, without providing any explicit 
R&D stimulus, can rely on industry—specifically the domestic defense industrial base and supporting 
vendors—to produce software innovations in areas of defense significance at a rate fast enough to allow 
the DoD to fully meet software requirements and remain ahead of potential adversaries. Finding the 
answer to this question is made more urgent by the expected continued rapid evolution of software 
capability worldwide. A loss of leadership could threaten the ability of the DoD not only to manifest 
world-leading capability, but also to achieve adequate levels of assurance for the diversely sourced 
software it intends to deploy. It will thus be essential for the DoD to reengage directly in the innovation 
process if it is to retain this necessary leadership. (See also Recommendation 5-1.) 

Finding 1-4: The DoD’s needs will not be sufficiently met through a combination of demand-pull 
from the military and technology-push from the defense or commercial information technology sec-
tors. The DoD cannot rely on industry alone to address the long-term software challenges particular 
to defense.

Defense requirements for software are in many respects similar to requirements in other sectors. 
But there are important areas where the DoD must push the envelope beyond mainstream capability 

�  Moore’s Law is an informal predictive model created by Gordon Moore in 1965 for the number of transistors on integrated 
circuit chips. For decades, there has been a close correlation of transistor count with both processor clock speeds and overall 
computing capacity. Recently, due to a combination of factors, clock speeds have leveled off or even diminished, while the growth 
in general-purpose computing capacity has been achieved through the provisioning of multiple processors (called “cores”). This 
has created an added challenge related to concurrency for software developers, as elaborated in Chapters 4 and 5.
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in order to meet its mission needs. These areas of “leading demand” include, for example, software 
assurance in the presence of highly sophisticated adversaries, architectural innovation and complexity, 
criticality with respect to safety, overall complexity and scale, and the arm’s-length relationship that the 
DoD has with its development teams—where mission stakeholders are often required to engage with 
development teams only through a legal and contractual interface. 

Recommendation 1-1: The DoD, through its Director of Research and Engineering (DDR&E), should 
regularly undertake an identification of areas of technological need related to software producibil-
ity where the DoD has “leading demand” and where accelerated progress is needed to support the 
defense mission.

2.  Accept uncertainty: attack risks and exploit opportunities

The management of innovative software development is largely a process of managing risks. Experi-
ence shows that, in the absence of advanced process models, there is a correlation between the degree 
of precedent and routinization, on the one hand, and the ability to deliver results with predictable cost, 
schedule, and success in acceptance evaluation, on the other. 

With regard to the precedented elements—whose users can benefit, in terms of design costs and 
risks, from the experience of existing and prior users—the DoD benefits by adjusting its practices to 
conform to government and industry conventions, enabling it to exploit a broader array of more mature 
market offerings. When applied to innovative systems, however, the familiar sequential (“waterfall”) 
processes can often lead to costly surprises and increased programmatic risk. That is, what appears 
to be a “safe” conservative decision to follow the most basic process is in fact a dangerous decision 
that can drastically increase programmatic risk and the possibility of total project failure. The largest 
producibility challenges for the DoD, therefore, arise from its need to develop innovative, unprec-
edented software systems. Such efforts at development necessarily build on precedented elements, 
and the unprecedented aspects may create substantial programmatic risk unless managed effectively. 
Effective management means identifying and mitigating the engineering risks that derive primarily 
from the innovative elements—architecture, assurance, requirements, design, scale, performance, etc. 
A well-managed incremental and iterative process, supported by appropriate iterative evaluation and 
measurement approaches, can more reliably lead to successful outcomes—lowering programmatic risk, 
even when there are significant engineering risks. 

Modern software governance is about managing uncertainty. This means treating project scope, 
plans, and resources as variables (not frozen baselines) and explicitly managing the variances in these 
variables until they converge to acceptable levels. This requires honest and well-informed assessments of 
engineering risks to effectively trade off cost, schedule, overall programmatic risk, and functionality.

When there is substantial software-manifest functionality as well as software-related risks, there 
should be a close coupling of design and process decisions relating to hardware, software, and human-
systems integration, with prioritization based on identified criteria.�

Finding 2-1: Modern practice for innovative software systems at all levels of scale is geared toward 
incremental identification and mitigation of engineering uncertainties, including requirements 
uncertainties. For defense software, the challenge is doing so at a larger scale and in ways that are 
closely linked with an overall systems engineering process. 

Following the practice of other organizations that manage large engineering projects, the DoD has 

�  Fred Brooks, 2010, The Design of Design: Essays from a Computer Scientist, Boston: Addison-Wesley. See also NRC, Richard Pew 
and Anne Mavor, eds., 2007, Human-System Integration in the System Development Process: A New Look, Washington, DC: National 
Academies Press. Available online at http://www.nap.edu/catalog.php?record_id=11893. Last accessed August 20, 2010.
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adopted earned value management (EVM), which is “a means of determining the financial health of 
a project by measuring whether the work completed to date is in line with the budget and schedule 
planning.” One of the reasons for using EVM is to get early warning of potential problems. EVM tracks 
plans, progress, cost, earned value (the planned cost of actual progress), and variances in cost and sched-
ule. The underlying technique is seemingly straightforward, but the application of EVM to innovative 
and unprecedented software-intensive systems poses challenges. These derive from the choice of EVM 
assessment and measurement strategies. Significant improvements are needed in our ability to value 
the creation of software assets such as validated architecture and design commitments or evidence in 
support of quality assurances. 

Finding 2-3: Extensions to earned value management models to include evidence of feasibility and 
to accommodate practices such as time-certain development are necessary conditions to enable suc-
cessful application of incremental development practices for innovative systems.

Finding 2-4: Research related to process, measurement, architecture, and assurance can contribute to 
the improvement of measurement practice in support of both routine management of engineering 
risks and value assessment as part of earned value management.

The committee focuses (in Chapter 2) on six areas for improvement in the management of innova-
tive software projects: (1) improved measurement and associated technology, (2) architecture validation 
using models, simulation, prototyping, etc., (3) program manager training and perceived career risks, 
(4) accretion of an accessible experience base and other shared resources that can facilitate sound deci-
sion making over the long term, (5) acceptable shifts of early-stage emphasis for innovative systems 
from detailed functional requirements to architecture, scope, and process definition, and (6) the need 
for flexibility and adaptation in long-lived projects. 

Recommendation 2-1: The DoD should take aggressive actions to identify and remove barriers to 
the broader adoption of incremental development methods, including iterative approaches, staged 
acquisition, evidence-based systems and software engineering, and related methods that involve 
explicit acknowledgment and mitigation of engineering risk.

An additional difficulty is the lack of a common basis for judging cost estimates. There are well-
used metrics for hardware, but a uniform set of standards for measurement in software development 
is lacking, although there are candidate models.

Recommendation 2-2: The DoD should take steps to accumulate high-quality data regarding project 
management experience and technology choices that can be used to inform cost estimation models, 
particularly as they apply to innovative software development projects. 

It is widely acknowledged, including within the DoD, that the department does not have sufficient 
organic personnel with the software expertise to meet its needs for today’s more software-intensive 
programs. This includes the expertise to effectively purchase the larger and less precedented systems 
as well as the precedented systems for which sensitivity to issues such as the choice of ecosystem is key. 
The necessary expertise includes understanding of process, architecture, requirements, and assurance, 
as well as of the trajectories and adoption trends for both the major commercial ecosystems and any 
involved DoD-intrinsic software ecosystems. Because the DoD does not currently have the requisite 
expertise and talent it needs for effective software producibility and the rapid pace of software devel-
opment demands ongoing interaction with the field, the DoD must engage experts outside of the DoD 
and its primes. The DoD should adapt processes to facilitate input from outside experts throughout the 
systems-engineering lifecycle for software-intensive systems.
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Finding 2-6: The DoD has a growing need for software expertise, and it is not able to meet this need 
through intrinsic resources. Nor is it able to fully outsource this requirement to DoD primes. The DoD 
needs to be a smart software customer. This need is particularly significant for large-scale innovative 
software-intensive projects for which there are cross-cutting software architectural requirements and 
validation challenges.

3.  Assert DoD Architectural Leadership

The increasing complexity and scale of innovative software systems demand that the DoD play an 
active role in the definition of systems and software architecture throughout the project lifecycle. Soft-
ware architecture is conventionally defined as “the structure or structures of the system, which comprise 
software components, the externally visible properties of those components, and the relationship among 
them.”� Architecture is significant because it represents the earliest and often most important design 
decisions: those that are the hardest to change and the most critical to get right. Architecture is the first 
design artifact that addresses quality attributes such as performance, modifiability, reliability, security, 
and safety. Although having a well-matched architecture is not a guarantee of success, software systems 
that are not based on well-formulated software architectures are, in the committee’s view, more likely 
to exhibit the kind of software horror stories too often experienced in DoD acquisitions with respect to 
project risk.

Finding 3-5: In systems with innovative functional or quality requirements, benefit is derived from 
an early focus on the most essential architectural commitments and quality attributes, with deferred 
commitment to specifics of functional characteristics. This approach can reduce the overall uncer-
tainty of the engineering process and yield better outcomes.

Architectural decision making for any particular software development project is profoundly influ-
enced by precedent—knowledge of related ecosystems, of systems and hardware infrastructure, of 
available frameworks and libraries, and of previous experience with similar systems and projects. Small 
changes to architectural requirements can open or close opportunities to exploit rich, existing ecosys-
tems, greatly influencing both cost and risk.10,11

Finding 3-1: Industry leaders attend to software architecture as a first-order decision, and many follow 
a product-line strategy based on commitment to the most essential common software architectural 
elements and ecosystem structures.

Architecture embodies planning for flexibility—architecture commitments effectively define and 
encapsulate areas where change or diversity is anticipated, or not. Software architecture commitments 
thus enable product-line strategies.

Finding 3-2: The technology for definition and management of software architecture is sufficiently 
mature, with widespread adoption in industry. These approaches are ready for adoption by the DoD, 
assuming that a framework of incentives can be created in acquisition and development efforts.

The DoD experience with long-term software acquisition programs has provided strong evidence 
for the value of software architecture,12 and there are examples of programs that have followed an archi-

�  Len Bass, Paul Clements, and Rick Kazman, 2003, Software Architecture in Practice, 2nd Ed., Boston: Addison-Wesley.
10  Dennis M. Buede, 2000, The Engineering Design of Systems: Models and Methods, New York: John Wiley & Sons, Inc., pp. 7-8, 25.
11  Barry Boehm, Ricardo Valerdi, and Eric Honour, 2008, “The ROI of Systems Engineering: Some Quantitative Results for 

Software-Intensive Systems,” Systems Engineering 11(3):221-234.
12  Walker E. Royce, 1998, Software Project Management: A Unified Framework, Reading, MA: Addison-Wesley. 
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tecture-driven acquisition strategy. These illustrate the benefits of pervasive commitment to an architec-
ture-driven approach13,14 — including reduced engineering risk, reduced development and maintenance 
costs, decreased time to field, increased system agility, and improved system quality. The opportunity 
exists for the DoD to assert leadership across its diverse software-intensive systems portfolio. 

It may be difficult to ascertain which kinds of architectural commitments are essential to an inno-
vative project—at the outset of a project, a small number of well-crafted “seed” commitments may 
be sufficient to enable a direction to be set. Generally speaking, architecture in the early stages of an 
innovative project should be the minimum commitment that yields the maximum value with respect 
to quality attributes and capability to incrementally implement functional capabilities. Refinement and 
elaboration—further architectural commitment— is then undertaken as part of an incremental iterative 
process. A corollary of this approach is that architecture leadership is best undertaken by individuals 
engaged directly in the engineering process and is best separate from activities related to ecosystems 
certification and other standards-related policy setting.  

Recommendation 3-2: This committee reiterates the past Defense Science Board recommendations 
that the DoD follow an architecture-driven acquisition strategy, and, where appropriate, use the 
software architecture as the basis for a product-line approach and for larger-scale systems potentially 
involving multiple lead contractors.

Recommendation 3-3: The DoD should enhance existing practices to afford better distinctions 
between precedented portions of systems and innovative portions of systems, wherein architectures 
are developed both to encapsulate the innovative elements and to afford maximum opportunity to 
build on experience and existing ecosystems for precedented elements. These overall architectures, 
and particularly the innovative elements, should be subject to early and continuous validation, 
especially in systems that have requirements for interoperation.

4.  Adopt a Strategic Approach to Software Assurance

One of the great challenges for both defense and civilian systems is software quality assurance. 
Software assurance encompasses reliability, security, robustness, safety, and other quality-related attri-
butes as well as functionality and performance. Diverse studies suggest that overall software assurance 
costs account for 30 to 50 percent of total project costs for most software projects.15 Despite this cost, 
current approaches to software assurance, primarily testing and inspection, are generally regarded as 

13  Mark Kasunic, 2004, Army Strategic Software Improvement Program (ASSIP) Survey of Army Acquisition Managers, Technical Report, 
Carnegie Mellon University/Software Engineering Institute (SEI), CMU/SEI-2004-TR-003. Available online at http://www.sei.
cmu.edu/library/abstracts/reports/04tr003.cfm. Last accessed August 20, 2010.

14  Peter H. Feiler and Dionisio de Niz, 2008, ASSIP Study of Real-Time Safety-Critical Embedded Software-Intensive System, Engi-
neering Practices, Special Report, Carnegie Mellon University/SEI, CMU/SEI-2008-SR-001. Available online at http://www.dtic.
mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA480129. Last accessed August 20, 2010.

15  In “Software Debugging, Testing, and Verification” (IBM Systems Journal (41)1, 2002), Brent T. Hailpern and P. Santhanam say, 
“In a typical commercial development organization, the cost of providing this assurance via appropriate debugging, testing, and 
verification activities can easily range from 50 to 75 percent of the total development cost.” In Estimating Software Costs (McGraw-
Hill, 1998), T. Capers Jones provides a table relating percentage of defects removed vs. percentage of development effort devoted 
to testing, with data points, including 90 vs. 39, 96 vs. 48, and 99.9 vs. 58. In Software Cost Estimation with COCOMO II (Prentice 
Hall, 2000), Barry W. Boehm, Chris Abts, A. Winsor Brown, Sunita Chulani, Bradford K. Clark, Ellis Horowitz, Ray Madachy, 
Donald Reifer, and Bert Steece indicate that the cost of test planning and running tests is typically 20 to 30 percent plus rework due 
to defects discovered. In Balancing Agility and Discipline: A Guide for the Perplexed (Addison-Wesley, 2004), Barry Boehm and Richard 
Turner provide an analysis of the COCOMO II Architecture and Risk Resolution scale factor, indicating that the increase in rework 
due to poor architecture and risk resolution is roughly 18 percent for typical 10-KSLOC (KSLOC stands for thousand software 
lines of code) projects and roughly 91 percent for typical 10,000-KSLOC projects. (COCOMO II, or constructive cost model II, is 
a software cost, effort, and schedule estimation model.) This analysis suggests that improvements are needed in upfront areas as 
well as in testing and supporting the importance of architecture research, especially for ultra-large systems.
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inadequate. Testing, for example, cannot yield assurance for many kinds of failures related to security 
or non-determinism.

In defense programs, the assurance process, including particularly the use of preventive approaches, 
is heavily complicated by the arms-length relationship that exists between a contractor development 
team and government stakeholders. Additionally, although the DoD relies extensively on vendor 
software and undertakes considerable testing of that software, it also implicitly relies on relationships 
founded in trust (rather than verification) to assure many quality attributes.16

Failures in software assurance can be of particularly high consequence for defense systems due to 
their growing roles in protecting human lives, in war fighting, and in safeguarding national assets. In 
many life and death situations, optimum performance may not be the proper overriding assurance cri-
terion, but rather the “minimization of maximum regret.” This is exacerbated by the fact that a full-scale 
operational test of many capabilities is not feasible, but assurance must nonetheless be achieved. 

Software assurance is a human judgment of fitness for use. For defense systems, there is particu-
lar emphasis on addressing hazards related to security, availability and responsiveness, safety, policy 
adherence, and diverse other attributes, but there are many other quality attributes encompassed by 
software assurance. In practice, assurance judgments are based on application of a broad range of tech-
niques that include both preventive and evaluative methods and that are applied throughout a software 
engineering process. It is false to conclude that assurance can be achieved entirely through acceptance 
evaluation such as achieved through DoD’s operational and systems test processes. In particular, it is 
well understood by software engineers and managers that quality, including security, is not “tested in,” 
but rather is “built in.” But there are great challenges to succeeding both in building in quality (preven-
tive methods) and in assuring that it is there (evaluative methods). From a process perspective, there is 
overlap between preventive and evaluative methods—when used at the earliest stages in the process, 
evaluative methods shorten feedback loops and guide development choices.

Development practices and technologies can profoundly influence the ability to achieve successful 
and cost-effective evaluation outcomes. These development choices range from choices of architecture 
to choices of programming language, coding style, and associated tooling. One of the great benefits of 
modern tooling is that a much more comprehensive record of development can be used to facilitate 
evaluation. 

Software assurance is different from reliability analysis for physical systems. Unlike other engineer-
ing materials, software does not wear out or suffer transient faults. But it can suffer transient errors, 
for example, because of concurrency. This is both an obvious and a subtle point. It is obvious in the 
sense that there is no analog of metal fatigue, rust and oxidation, or other kinds of physical deteriora-
tion or environmentally induced change in physical properties. It is subtle because software is often 
the mechanism of choice for handling such faults in associated hardware. When software delivers bad 
results, including transient errors, they are due to permanently faulty software design, which must be 
addressed by changes in the software code.

The goal of assurance methods is to ultimately connect the code that is executed with architectural, 
functional, and quality requirements. Although software code is all that is necessary for the software to 
operate, considerable additional information is needed to effectively support ongoing evolution of the 
software over its lifespan, including architecture models, designs, test cases, etc. This information sup-
ports an incremental process, in which chains of evidence can be created with links among the artifacts 
being created (and adapted) as the development process proceeds. Validation of these traceability links 
comes from diverse techniques including testing, inspection, analysis, model checking, and simulation. 
An example of a link is a test case that connects code with a particular expectation regarding behavior 
at an internal software interface. Advancement in research and practice could lead to chains of evidence 

16  DSB, September 2007, Report of the Defense Science Board Task Force on Mission Impact of Foreign Influence on DoD Software, Wash-
ington, DC: Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics. Available online at http://stinet.
dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA473661. Last accessed August 20, 2010.
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that could both support quality claims and protect trade secrets or proprietary technology in compo-
nents. For example, traceability links can include modeling with respect to various attributes, as well 
as analyses that link models with each other and with code. These links, in aggregate, can create chains 
of evidence as noted above.

Software assurance (and producibility generally) are influenced not only by the extent of this design-
related information but also by the means by which it is represented. There are four dimensions of rep-
resentation that are most significant—formality (precise structure and meaning), modeling (reasoning 
about diverse aspects of a system), consistency (among various artifacts), and usability (feasibility for 
use by working development teams). 

Finding 4-1: The feasibility of achieving high assurance for a particular system is strongly influenced 
by early engineering choices, particularly architectural and tooling choices. 

Finding 4-2: Assurance is facilitated by advances in diverse aspects of software engineering practice 
and technology, including modeling, analysis, tools and environments, traceability, programming 
languages, and process support. Advances focused on simultaneous creation of assurance-related 
evidence with ongoing development effort have high potential to improve the overall assurance of 
systems.

Because modern systems of all kinds draw on diverse components from diverse sources, there will 
necessarily be differences in the levels of trust conferred on both components and suppliers. This means 
that, in the parlance of cybersecurity, there are potential attack surfaces from within the software appli-
cation as well as from the outside and that we must support rigorous defense at the interfaces within 
the application. In other words, the new perimeter is within the application rather than around it or its 
platform.

Recommendation 4-1: Effective incentives for preventive software assurance practices and produc-
tion of evidence across the lifecycle should be instituted for prime contractors and throughout the 
supply chain. 

Recommendation 4-2: The DoD should expand its research focus on and its investment in both 
fundamental and incremental advances in assurance-related software engineering technologies and 
practices.

 
Recommendation 4-3: The DoD should examine commercial best practices for more rapidly tran-
sitioning assurance-related best practices into development projects, including contracted custom 
development, supply-chain practice, and in-house development practice.

5.  ReinvigoratE DoD Software Engineering Research

The committee identified seven technology areas where research progress would make a difference 
for DoD’s software capability.

•	 Architecture modeling and architectural analysis. Goals: (1) Facilitation of early validation for archi-
tecture decisions, including measures, modeling and evaluation, and compliance. (2) Facilitation of 
architecture-aware systems management, including models of congruence and a means to manage rich 
supply chains, ecosystems, and infrastructure. (3) Facilitation of component-based development, includ-
ing architectural designs for particular domains. 

•	 Assurance: validation, verification, and analysis of design and code. Goals: (1) Effective evaluation for 
critical quality attributes. (2) Assurance for components in large heterogeneous systems. (3) Enhanced 
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portfolio of preventive methods to achieve assurance, ranging from process improvement and architec-
tural building blocks to programming languages and coding practice. 

•	 Process support and economic models for assurance and adaptability. Goals: (1) Enhanced process sup-
port for assured software development. (2) Models for evidence production in software supply chains. 
(3) Application of economic principles to process decision making.

•	 Requirements. Goals: (1) More expressive models and supporting tools for both functional and 
quality attributes. (2) Improved support for traceability and early validation. 

•	 Language, modeling, coding, and tools. Goals: (1) Enhanced expressiveness of programming lan-
guages to address current and emerging challenges. (2) Enhanced ability to exploit modern concur-
rency, including shared memory multicore and scalable distributed memory. (3) Enhanced developer 
productivity for new development and evolution. 

•	 Cyber-physical systems. Goals: (1) Accelerated development of new conventional architectures for 
control systems. (2) Improved architectures for a wide range of embedded applications. 

•	 Human-system integration. Goal: (1) Development of engineering practices for complex systems 
in which humans play critical roles. This area is elaborated in another NRC report.17

The committee made its selection of these seven technical areas on the basis of four considerations: 
(1) capabilities identified to have significant potential value through the committee’s examination of 
the key DoD software producibility priorities: process, measurement, architecture, and assurance, as 
reported in Chapters 2, 3, and 4; (2) capabilities that can be feasibly developed through a well-managed 
research program, based on accepted research management criteria (such as the Heilmeier questions 
for research program managers who propose new program ideas—see Chapter 5); (3) capabilities not 
addressed sufficiently by other federal agencies; and (4) capabilities that might not develop at a suf-
ficient pace without explicit added investment. The proposed research would be undertaken by a mix 
of academia, government labs, and industry. Academic research has historically had a particular role 
in advancing DoD technical capability, through both research and expertise, and this role persists for 
software producibility.

Finding 5-1: Academic research and development continues to be the principal means for develop-
ing the most highly skilled members of the software workforce, including those who will train the 
next generation of leaders, and for stimulating the entrepreneurial activity that leads to disruptive 
innovation in the information technology industry. Both academic and industry labs are creating 
the fundamental advances in knowledge that are needed to drive innovation leadership in new 
technologies and to advance software technologies that are broadly applicable across industry and 
the DoD supply chain.

Directions and priorities for university-originated invention are greatly influenced by funding 
levels and agency priorities. For example, the Defense Advanced Research Projects Agency’s (DARPA’s) 
deliberately strong relationship with the information technology (IT) research community, which began 
in the 1960s and endured for nearly 40 years, profoundly influenced IT research priorities, the overall 
culture of computer science research, and the substantial economic and social outcomes that resulted. 
This relationship is documented in NRC reports that trace the origins of IT innovations, each of which 
has led to a multibillion-dollar market.18

17  See NRC, Richard Pew and Anne Mavor, eds., 2007, Human-System Integration in the System Development Process: A New Look, 
Washington, DC: National Academies Press. Available online at http://www.nap.edu/openbook.php?record_id=11893. Last 
accessed August 20, 2010. 

18  See NRC, 2003, Innovation in Information Technology, Washington, DC: National Academies Press. Available online at http://
www.nap.edu/catalog.php?record_id=10795. Last accessed August 20, 2010. See also the predecessor report, NRC, 1995, Evolving 
the High Performance Computing and Communications Initiative, Washington, DC: National Academy Press. Available online at 
http://www.nap.edu/catalog.php?record_id=4948. Last accessed August 20, 2010.
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Data from the Networking and Information Technology Research Development (NITRD) program 
and other sources indicate that there has been a significant reduction in federally sponsored research 
related to software producibility. From 2004 to 2010, overall funding for the NITRD program more than 
doubled. During the same period, the combined dollar allocation to the two categories most relevant to 
software producibility was reduced by almost half.19 (See Box 1.5 for details.) Expressed as a percent-
age of the total NITRD budget, the combined allocation for the software-related categories dropped 
from 24.6 percent to 6.5 percent. Furthermore, it is the committee’s impression that in recent years, as 
a consequence of these reductions, many of the researchers in these areas have moved into other fields 
or scaled down their research efforts.

Recommendation 5-1: The DoD should take immediate action to reinvigorate its investment in soft-
ware producibility research. This investment should be undertaken through a diverse set of research 
programs throughout the DoD and should include academia, industry labs, and collaborations.

It is important that researchers understand the challenges associated with the way the DoD develops 
software.20 This includes not only the particular technical challenges, but also the influences of factors 
such as the arm’s-length relationship between the DoD and the contractors doing the development. DoD 
research agencies have instituted programs to help younger faculty get the needed domain exposure. 
These are important to continue and broaden if university programs are to be relevant.

Finding 5-2: Technology has a significant role in enabling modern incremental and iterative software 
development practices at levels of scale ranging from small teams to large distributed development 
organizations.

There are significant and particular difficulties in managing research in topics related to software 
producibility. But there are also major opportunities based on recent progress in the field, including 
technology developments, scientific practice, and the overall environment of production practice. Taking 
challenges and opportunities together, the influences include (1) the maturation of software engineering 
as a discipline, leading to improved research methods and lower risk in technology transition—facilitat-
ing more satisfactory responses to the Heilmeier questions; (2) the complexity of diffusion pathways 
and the variability of timescales, where some results can readily transfer to DoD practice, while others, 
often the most significant and influential, take longer and have more indirect pathways; (3) an emerg-
ing concept of novelty that is often more closely tied with readiness with respect to infrastructure and 
the various exponential curves than with specific technical novelty—the question is often, What are the 
ideas whose time has come? (4) improved methods to assess progress in the absence of crisp quantita-
tive measures of performance (e.g., how to assess the benefits of strong typing in a quantitative way) 
or when the focus of research is on developing such measures; and (5) unpredictability in the span of 
time from the emergence of a new idea to the readiness to transition that idea with respect to practice, 
infrastructure, and other variables.

An additional difficulty is the development of models of return on investment in research related to 
software producibility. This difficulty is present for all investment in basic science and exploratory devel-
opment, but it can be particularly vexing for computing technology and software. This difficulty has been 
the subject of intense study by the National Research Council and other groups; several reports have 
been produced that offer a historical perspective, showing the emergence of multiple multibillion-dollar 

19  These categories are Software Design and Productivity (SDP) and High Confidence Software and Systems (HCSS). The 
reported amounts for SDP and HCSS do not include 2010 NIH funding for accounting reasons that are explained in Chapter 1. 
Comparisons are in constant dollars.

20  A brief description of such challenges can be found on p. 23 in NRC, 2010, Achieving Effective Acquisition of Information Technol-
ogy in the Department of Defense, Washington, DC: National Academies Press. Available online at http://www.nap.edu/catalog.
php?record_id=12823. Last accessed August 20, 2010.
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markets on the basis of initial investment in worthy projects by NITRD agencies. Under the auspices 
of professional societies, similar studies were published relating specifically to software engineering 
research.21 These reinforce the extent of the impact of well-managed investments. 

Recommendation 5-2: The DOD should take action to undertake DoD-sponsored research programs 
in the following areas identified as critical to the advancement of defense software producibility: 
(1) architecture modeling and architectural analysis; (2) assurance: validation, verification, analy-
sis of design and code; (3) process support and economic models for assurance and adaptability; 
(4) requirements; (5) language, modeling, coding, and tools; (6) cyber-physical systems; and (7) human-
systems integration. 

21  Mary Shaw, 2002, “The Tyranny of Transistors: What Counts about Software?” Proceedings of the Fourth Workshop on Economics-
Driven Software Engineering Research, IEEE Computer Society, pp. 49-51; Barry Boehm, 2006, “A View of 20th and 21st Century 
Software Engineering,” Proceedings of the 28th International Conference on Software Engineering, ACM, pp. 12-29; and Leon J. 
Osterweil, Carlo Ghezzi, Jeff Kramer, and Alexander L. Wolf, 2008, “Determining the Impact of Software Engineering Research 
on Practice,” IEEE Computer 41(3):39-49.
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Box S.2 
Compilation of Report Findings and Recommendations

Chapter 1 

Finding 1-1: Software has become essential to a vast range of military system capabilities and operations, 
and its role is continuing to deepen and broaden, including interlinking diverse system elements. This 
creates both benefits and risks. 

Finding 1-2: The growth in the role of software in systems is due to a combination of technological 
advances and a maturing of the supply chain structure associated with software systems development 
at all levels of scale.

Finding 1-3: The DoD relies fundamentally on mainstream commercial components, supply chains, and 
software ecosystems for both business systems and many mission systems. Nonetheless, the DoD has 
special needs in its mission systems driven by the growing role of software in systems. As a result, the 
DoD needs to address directly the challenge of building on and, where appropriate, contributing to 
the development of mainstream software that can contribute to its mission.

Finding 1-4: The DoD’s needs will not be sufficiently met through a combination of demand-pull from 
the military and technology-push from the defense or commercial information technology sectors. 
The DoD cannot rely on industry alone to address the long-term software challenges particular to 
defense.

Recommendation 1-1: The DoD, through its Director of Research and Engineering (DDR&E), should 
regularly undertake an identification of areas of technological need related to software producibility 
where the DoD has “leading demand” and where accelerated progress is needed to support the de-
fense mission.

Finding 1-5: It is dangerous to conclude that we are reaching a plateau in capability and technology for 
software producibility. To avoid loss of leadership, the DoD will need to become more fully engaged 
in the innovative processes related to software producibility.

Chapter 2 

Finding 2-1: Modern practice for innovative software systems at all levels of scale is geared toward 
incremental identification and mitigation of engineering uncertainties, including requirements uncer-
tainties. For defense software, the challenge is doing so at a larger scale and in ways that are closely 
linked with an overall systems engineering process. 

Finding 2-2: The prescription in DoD Instruction 5000.02 for the use of evolutionary development needs 
to be supplemented by the development of related guidance on the use of such practices as time-
certain development, requirements prioritization, evidence-based milestones, and risk management.

Finding 2-3: Extensions to earned value management models to include evidence of feasibility and to 
accommodate practices such as time-certain development are necessary conditions to enable success-
ful application of incremental development practices for innovative systems.

Finding 2-4: Research related to process, measurement, architecture, and assurance can contribute to 
the improvement of measurement practice in support of both routine management of engineering 
risks and value assessment as part of earned value management.

continued
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Box S.2 Continued

Recommendation 2-1: The DoD should take aggressive actions to identify and remove barriers to the 
broader adoption of incremental development methods, including iterative approaches, staged acqui-
sition, evidence-based systems and software engineering, and related methods that involve explicit 
acknowledgment and mitigation of engineering risk.

Recommendation 2-2: The DoD should take steps to accumulate high-quality data regarding project 
management experience and technology choices that can be used to inform cost estimation models, 
particularly as they apply to innovative software development projects. 

Finding 2-5: Architectural expertise is becoming dramatically more important for the DoD, its advisors, 
and its contractors. There will be significant and immediate benefits from advances in the state of 
technical support for architecture.

Recommendation 2-3: Update procurement, contracting, and governance methods to include an ear-
ly and explicit architecture phase that reduces the predominant uncertainties in software intensive 
systems.

Recommendation 2-4: Define architectural leadership roles for major SIDRE projects and provide pro-
gram managers with channels for architectural expertise.

Recommendation 2-5: Develop the technical and management infrastructure necessary to simultane-
ously support stabilized, high-assurance development of the current evolutionary increment while 
concurrently evolving the plans and specifications for stabilized development of the next high-assur-
ance increment.

Finding 2-6: The DoD has a growing need for software expertise, and it is not able to meet this need 
through intrinsic resources. Nor is it able to fully outsource this requirement to DoD primes. The DoD 
needs to be a smart software customer. This need is particularly significant for large-scale innovative 
software-intensive projects for which there are cross-cutting software architectural requirements and 
validation challenges.

Chapter 3 

Finding 3-1: Industry leaders attend to software architecture as a first-order decision, and many follow 
a product-line strategy based on commitment to the most essential common software architectural 
elements and ecosystem structures.

Finding 3-2: The technology for definition and management of software architecture is sufficiently 
mature, with widespread adoption in industry. These approaches are ready for adoption by the DoD, 
assuming that a framework of incentives can be created in acquisition and development efforts.

Finding 3-3: The DoD would benefit from explicit attention to software architecture and industry best 
practice, including (1) formalizing career paths and role descriptions for software architects, (2) iden-
tifying ways that DoD-aligned software architects can provide objective advice (see Chapter 2), and (3) 
enhancing organizational structures to support effective architectural leadership.

Finding 3-4: Several DoD programs are using software architecture-driven acquisition with successful 
results.
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Recommendation 3-1: Initiate a targeted research program to provide software architects with better 
tools and techniques for DoD systems.

Recommendation 3-2: This committee reiterates the past Defense Science Board recommendations that 
the DoD follow an architecture driven acquisition strategy, and, where appropriate, use the software 
architecture as the basis for a product-line approach and for larger-scale systems potentially involving 
multiple lead contractors.

Recommendation 3-3: The DoD should enhance existing practices to afford better distinctions be-
tween precedented portions of systems and innovative portions of systems, wherein architectures are 
developed both to encapsulate the innovative elements and to afford maximum opportunity to build 
on experience and existing ecosystems for precedented elements. These overall architectures, and 
particularly the innovative elements, should be subject to early and continuous validation, especially 
in systems that have requirements for interoperation.

Finding 3-5: In systems with innovative functional or quality requirements, benefit is derived from an 
early focus on the most essential architectural commitments and quality attributes, with deferred com-
mitment to specifics of functional characteristics. This approach can reduce the overall uncertainty of 
the engineering process and yield better outcomes.

Recommendation 3-4: The DoD should learn from commercial experience and, in addition, sponsor 
diverse areas of technical research to help reduce the engineering risk in architecting systems that 
include unprecedented functional and quality attributes.

Chapter 4 

Finding 4-1: The feasibility of achieving high assurance for a particular system is strongly influenced by 
early engineering choices, particularly architectural and tooling choices.

Finding 4-2: Assurance is facilitated by advances in diverse aspects of software engineering practice and 
technology, including modeling, analysis, tools and environments, traceability, programming languages, 
and process support. Advances focused on simultaneous creation of assurance-related evidence with 
ongoing development effort have high potential to improve the overall assurance of systems.

Recommendation 4-1: Effective incentives for preventive software assurance practices and production 
of evidence across the lifecycle should be instituted for prime contractors and throughout the supply 
chain.

Recommendation 4-2: The DoD should expand its research focus on and investment in both fundamental 
and incremental advances in assurance-related software engineering technologies and practices.

Recommendation 4-3: The DoD should examine commercial best practices for more rapidly transition-
ing assurance-related best practices into development projects, including contracted custom develop-
ment, supply chain practice, and in-house development practice.

Box S.2 Continued

continued
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Chapter 5 

Finding 5-1: Academic research and development continues to be the principal means for developing 
the most highly skilled members of the software workforce, including those who will train the next 
generation of leaders, and for stimulating the entrepreneurial activity that leads to disruptive innovation 
in the information technology industry. Both academic and industry labs are creating the fundamental 
advances in knowledge that are needed to drive innovation leadership in new technologies and to 
advance software technologies that are broadly applicable across industry and the DoD supply chain.

Finding 5-2: Technology has a significant role in enabling modern incremental and iterative software 
development practices at levels of scale ranging from small teams to large distributed development 
organizations.

Recommendation 5-1: The DoD should take immediate action to reinvigorate its investment in software 
producibility research. This investment should be undertaken through a diverse set of programs across 
the DoD and should include academia, industry labs, and collaborations.

�Recommendation 5-2: The DoD should take action to undertake DoD-sponsored research programs 
in the following areas identified as critical to the advancement of defense software producibility: 
(1) architecture modeling and architectural analysis; (2) assurance: validation, verification, analysis of 
design and code; (3) process support and economic models for assurance and adaptability; (4) require-
ments; (5) language, modeling, coding, and tools; (6) cyber-physical systems; and (7) human-systems 
integration. 

Box S.2 Continued
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1

Recognize the Pivotal Role of 
DoD Software Innovation

The Role of Software In Defense

The pivotal role of information technology (IT) in defense has been noted in multiple studies.�,�,�,� 

Software is increasingly used to embody the functionality of defense systems of all kinds,� and IT is 
used pervasively in the Department of Defense (DoD) for a multitude of different purposes and in a 
multitude of different program types (Box 1.1). It is a key enabler of overall systems scale and complex-
ity, of integration among systems (net-centricity and “ultra-scale”), and of agility in systems. Mission 
capability embodied in software has become a unique source of strategic and military advantage, and 
software producibility is emerging as a key component of military strength, capability, and readiness. 
The committee uses the term “software producibility” to refer to the capacity to design, produce, assure, 
and evolve software-intensive systems in a predictable manner while effectively managing risk, cost, 
schedule, and complexity.

The Defense Science Board’s (DSB’s) Task Force on Mission Impact of Foreign Influence on DoD 
Software, which explored the essential role of software in defense, released its report in September 

�  Defense Science Board (DSB), September 2007, Report of the Defense Science Board Task Force on Mission Impact of Foreign Influence 
on DoD Software, Washington, DC: Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics. Available 
online at http://stinet.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA473661. Last accessed August 
20, 2010.

�  DSB, November 2000, Report of the Defense Science Board Task Force on Defense Software, Washington, DC: Office of the Under 
Secretary of Defense for Acquisition, Technology, and Logistics. Available online at http://oai.dtic.mil/oai/oai?verb=getRecord
&metadataPrefix=html&identifier=ADA385923. Last accessed August 20, 2010.

�  National Research Council (NRC), 2010, Achieving Effective Acquisition of Information Technology in the Department of Defense, 
Washington, DC: National Academies Press. 

�  NRC, 1999, Realizing the Potential of C4I: Fundamental Challenges, Washington, DC: National Academy Press. Available online 
at http://www.nap.edu/catalog.php?record_id=6457. Last accessed August 20, 2010.

�  DSB, November 2000, Report of the Defense Science Board Task Force on Defense Software, Washington, DC: Office of the Under 
Secretary of Defense for Acquisition, Technology, and Logistics. Available online at http://oai.dtic.mil/oai/oai?verb=getRecord
&metadataPrefix=html&identifier=ADA385923. Last accessed August 20, 2010.
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2007.� The report notes that “in the Department of Defense, the transformational effects of information 
technology (IT—defined here broadly to include all forms of computing and communications), joined 
with a culture of information sharing, called Net-Centricity, constitute a powerful force multiplier. The 
DoD has become increasingly dependent for mission-critical functionality upon highly interconnected, 
globally sourced, IT of dramatically varying quality, reliability and trustworthiness.”� In other words, 
at the core of the ability to achieve integration and maintain agility is the ability of the DoD to produce and 
evolve software. This echoes a judgment expressed in many other studies that have considered the role 
of software in defense.� The report further notes, however, that “each year the Department of Defense 
depends more on software for its administration and for the planning and execution of its missions,” 

�  DSB, September 2007, Report of the Defense Science Board Task Force on Mission Impact of Foreign Influence on DoD Software, Wash-
ington, DC: Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics. Available online at http://stinet.
dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA473661. Last accessed August 20, 2010.

�  Ibid., p. vii.
�  See referenced studies above. 

BOX 1.1  
A Taxonomy of Information Technology Program Types

Many taxonomies have emerged to assist managers in identifying common patterns among re-
quirements and system types and then building on that knowledge to define and implement best 
practices and standards that are suited to particular categories of systems. Distinctions are made based 
on the function and role of the system, the types of risk to be addressed, the scale of systems and 
budgets, and other factors. 

This report adopts the following taxonomy of IT programs:

1. Business systems and office IT
2. Command and control
3. Computing and communications infrastructure
4. Intelligence, Surveillance, and Reconnaissance (ISR), space, and weapons

The classification, which is loosely based on a classification scheme used within the DOD to track IT 
acquisition programs,� is primarily functional. But the functional categories also correspond roughly to 
distinctions among programs based on the extent of innovation (more in categories 2 and 4) and those 
that are more likely to have precedented requirements and architectures and thus build on established 
ecosystems (categories 1 and 3). 

These categories also separate IT that is embedded in weapons or weapons systems or similar plat-
forms with potentially high systems risk (category 4), IT in which software and hardware are less tightly 
integrated (categories 1 and 2), and IT that provides the computing and communications infrastructure 
(category 3) that can be used by systems identified in the other categories.

Because modern larger-scale systems are interconnected and therefore more often integrate 
across these functionalities, greater numbers of systems may cross these boundaries. For example, 
many weapons systems incorporate command-and-control functionalities.

Finally, despite the differences among these categories, most systems rely on similar development 
practices, including design and architectural concepts, programming languages, process and measure-
ment concepts, and tools.

 1 Based on a taxonomy used by the Office of the Assistant Secretary of Defense for Networks and Information 
Integration to categorize major automatic information system programs.
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and additionally “this growing dependency is a source of weakness exacerbated by the mounting size, 
complexity, and interconnectedness of its software programs.”� 

The rapid growth of software in defense systems is especially significant and parallels the growing 
role of software in a broad range of application domains. This growth is a natural outcome of the special 
engineering characteristics of software: Software is uniquely unbounded and flexible, having relatively 
few intrinsic limits on the degree to which it can be scaled in complexity and capability. Software is an 
abstract and purely synthetic medium that, for the most part, lacks fundamental physical limits and 
natural constraints. For example, unlike physical hardware, software can be delivered and upgraded 
electronically and remotely, greatly facilitating rapid adaptation to changes in adversary threats, mis-
sion priorities, technology, and other aspects of the operating environment. The principal constraint is 
the human intellectual capacity to understand systems, to build tools to manage them, and to provide 
assurance—all at ever-greater levels of complexity. 

The extent of the DoD code in service has been increasing by more than an order of magnitude 
every decade, and a similar growth pattern has been exhibited within individual, long-lived military 
systems. In addition to this growth in size (as well as growth in other system aspects such as resource 
usage), there is a corresponding growth in overall system capability and complexity. 

This chapter addresses the first two of the four questions taken up by the committee:

•	 To what extent is software capability significant for the DoD? Is it becoming more significant or 
less so? 

•	 Will the advances in software producibility needed by the DoD emerge unaided from industry 
at a pace sufficient to meet evolving defense requirements?

Growth in the Role and Significance of Software to Defense

The value that software contributes to major systems is increasing rapidly and becoming more 
fundamental to system capability. The DSB Task Force report on defense software (2000)10 illustrates 
this point in the case of combat aircraft. The percentage of system functions performed by software 
has risen from 8 percent of the F-4 in 1960, to 45 percent of the F-16 in 1982, to 80 percent of the F-22 in 
2000.11 Software has become essential to all aspects of military system capabilities and operations, and 
software-specific investment is critical to them.12 

Macroeconomic data show analogous growth in the role software plays in the commercial world. 
This is significant because commercial vendors are key contributors to the defense software supply 
chain—for Future Combat Systems,13 for example, 27 million source lines of code (more than 42 percent 

�  DSB, September 2007, Report of the Defense Science Board Task Force on Defense Software, p. v.
10  DSB, November 2000, Report of the Defense Science Board Task Force on Defense Software, Washington, DC: Office of the Under 

Secretary of Defense for Acquisition, Technology, and Logistics. Available online at http://oai.dtic.mil/oai/oai?verb=getRecord
&metadataPrefix=html&identifier=ADA385923. Last accessed August 20, 2010.

11  Ibid., Table 3.3a. Available online at http://www.acq.osd.mil/dsb/reports/defensesoftware.pdf. Accessed February 25, 
2008.

12  Boehm, Kind, and Turner quote an unidentified U.S. Air Force General, “About the only thing you can do with an F-22 
without software is take a picture of it.” In Barry Boehm, Richard Turner, and Peter Kind, 2002, “Risky Business: Seven Myths 
About Software Engineering That Impact Defense Acquisitions,” Program Manager, May 1, 2002. The committee notes, however, 
that with modern cameras, even taking a picture cannot be done without software.

13  Future Combat Systems (FCS) was “the Army’s modernization program consisting of a family of manned and unmanned 
systems, connected by a common network, that enables the modular force, providing our Soldiers and leaders with leading-edge 
technologies and capabilities allowing them to dominate in complex environments.” U.S. Army, “Future Combat Systems.” Avail-
able online at http://www.army.mil/fcs/. Accessed March 3, 2008.
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of the total delivered executable source lines of code) were commercial off-the-shelf (COTS) or open 
source.14 

It is also significant because software capability has become a strategic source of market differentia-
tion in many industries, from financial services and health care to telecommunications and entertain-
ment. A 2002 report by the National Research Council’s (NRC’s) Board on Science, Technology, and 
Economic Policy15 noted that since 1995 the IT and networking industries had accounted for 20 percent of 
the nation’s economic growth, even though they accounted for only 3 percent of gross domestic product 
(GDP). Comparable figures exist in the European Community—the information and communications 
technology (ICT) sector represents just above 5 percent of the European GDP, but reports show that ICT 
drives 25 percent of overall growth and about 40 percent of the increase in productivity.

Finding 1-1: Software has become essential to a vast range of military system capabilities and opera-
tions, and its role is continuing to deepen and broaden, including interlinking diverse system ele-
ments. This creates both benefits and risks. 

Software in Systems

Military system capability is heavily dependent on software, which has become an enabler for much 
of the functionality and flexibility of our war-fighting systems. Software has proven to be a differentia-
tor in system capability for a wide range of current systems such as the F-22, F-35 Lightning II, and the 
Aegis Combat System. Software to modify and integrate existing capabilities was a key enabler in the 
February 2008 successful shoot-down of an errant U.S. satellite as it tumbled back to Earth.

This critical role of software in defense is also noted in the more recent DSB Task Force report on 
foreign software, which states, “The DoD now relies upon networked, highly-interconnected systems 
for many mission-critical capabilities, and this reliance is projected to increase. The software in these 
systems is the key ingredient that provides much of the increased capability delivered to the warfighter, 
just as it represents the key factor in increased productivity and new capabilities for industry today. 
For the DoD, this advanced technology is a force multiplier.”16,17 A high level of software capability is 
also important in producing defense systems. For example, very-large-scale, highly networked, and 
crypto-secured software systems were needed for the robotic design used to construct the production 
line for F-35 manufacturing.

Given the importance of software to the DoD, a vital question is how the department can ensure 
that it will be able to meet its software needs now and into the future. The subsequent chapters of this 
report explore significant facets of this issue.

Software provides the means to manifest the modeling and simulation capability now essential in 
the design and testing of advanced military platforms and weapons in all branches of the DoD. These 
design-focused software capabilities can save millions of dollars—all before the first piece of metal is 
bent. But perhaps even more importantly, in these early stages this software capability enables the cus-
tomer to focus on driving out risks related to the definition of weapons and systems functionality and 

14  DSB, September 2007, Report of the Defense Science Board Task Force on Mission Impact of Foreign Influence on DoD Software, 
Washington, DC: Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics, p. 77. Available at http://
stinet.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA473661. Last accessed August 10, 2010. The FCS 
program was cancelled in 2009, but the experience of that program nonetheless provides valuable insight.

15  NRC, 2002, Measuring and Sustaining the New Economy: Report of a Workshop, Washington, DC: National Academies Press, p. 52. 
Available online at http://www.nap.edu/openbook.php?record_id=10282&page=52. Last accessed August 10, 2010. 

16  DSB, September 2007, Report of the Defense Science Board Task Force on Mission Impact of Foreign Influence on DoD Software, Wash-
ington, DC: Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics, p. 12. Available at http://stinet.
dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA473661. Last accessed August 20, 2010.

17  DSB, April 2009, Creating a DoD Strategic Acquisition Platform, Washington, DC: Office of the Under Secretary of Defense for 
Acquisition, Technology, and Logistics. Available online at http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA499566&Location
=U2&doc=GetTRDoc.pdf. Last accessed August 20, 2010.
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architecture. The savings are due to the elimination of the need to build and test numerous prototype 
designs—this is now done through software. For many systems, this modeling and simulation software 
implements high-fidelity, massively parallel computational fluid dynamics (CFD) simulations. These 
simulations enable experimentation with signatures of different missile and aircraft designs without 
having to resort to expensive physical tests. Wind tunnel testing alone, for example, can cost millions 
of dollars per week, with months of testing required to settle design issues. 

Other examples of software-manifest functionality used pervasively in defense systems include 
onboard prognostic health systems and automated logistic support systems, both of which emerged 
from Defense Advanced Research Projects Agency (DARPA) research funding in the 1980s. These soft-
ware-enabled systems are quietly saving millions of dollars.

Software in Organizations

In addition to deepening the extent of reliance on software in systems components and in the 
tooling associated with their development, there is a significant broadening of the role of software in 
systems and organizations. These changes reflect both a growing centrality in the role of software and 
also a growing portfolio of associated risks. This combination raises the significance of software-related 
decisions in systems development—software has become the medium of choice for innovative func-
tionalities. These functionalities include not only component capabilities, but also functionalities that 
are enabled through the use of software to implement interconnections across a family of constituent 
systems. However, largely as a consequence of both of these roles—innovation and interconnection—
software has emerged as the locus for a range of engineering challenges related to reliability, security, 
and development predictability.

The interconnection aspect of this shift has three principal elements. First, there is a shift in emphasis 
from the development of functionally focused systems to the development of systems that interconnect 
and integrate capabilities within and across enterprises. The “net-centric” and “ultra-scale” concepts are 
reflective of this shift. This has great strategic benefit, in that it leverages the value of dispersed assets 
and enables agile responses at a broad range of echelons in war-fighting situations when multiple sys-
tems elements are involved. This interconnection has associated risks, of course, primarily related to the 
magnitude of failures experienced as a consequence of internal errors, vulnerabilities exploited, etc. In 
civilian systems, for example, there are widely reported examples of cascading failures of interconnected 
systems in telecommunications, utilities, and supply chain systems.

Second, largely as a consequence, IT staffs are generally less involved in mediating between a system 
and its users. Much larger numbers of DoD personnel interact directly with systems, and indeed many 
systems can be (and need to be) accessed through public communication infrastructure. This is more 
efficient because it removes the delays and inaccuracies caused by intermediation. But it also means that 
many more individuals—usually inadvertently, but not always—can take actions with wide-reaching 
consequences, both positive and negative. 

A third element of the interconnection aspect is that modern systems can support immediate elec-
tronic enactment of decisions. This enables agility and fast response in decisions and actions—getting 
inside the command loop of an adversary, but it also means that failures and compromises can happen 
very quickly, inside a human decision loop. An example in the civilian context is the recent discussion 
over the duration in milliseconds of the stock trading look-ahead window.

Fourth, interconnection introduces new information security challenges. 

Software Supply Chains

The growth in the role of software, as described above, is enabled in part by a surprisingly recent 
phenomenon in IT, which is the diversification and enrichment of the supply-chain structure for IT 
systems. This enrichment is more than just systems outsourcing as experienced in the past half century. 
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Supply chains for software systems are both broader and deeper today, and they include commercial 
as well as defense players and involve technically rich and complex architectures, with frameworks, 
libraries, services, and other roles contributed by multiple players. The value of outsourcing, which 
was initially primarily cost reduction and access to expertise, now includes greater agility and ability 
to respond to changes in the operating environment. 

The supply-chain structure for modern defense software is evolving in a similar way, and is now 
significantly more complex and more international than it was even just a decade ago. Indeed, this com-
bination of factors motivated the Defense Science Board study mentioned above to assess the impact of 
this internationalization on defense software systems, including their development and their assurance.18 
The complexity—and the internationalization—are due to a combination of factors, including certain 
technical developments in software technology, the economic forces and technological enablers of glo-
balization, the geographic dispersion of the trained workforce, the minimal capital investment required 
(not including education and training) for the workforce, and increasing demand for precedented (rou-
tinized) projects. The complexity is also enabled by the maturation and acceptance of a diverse set of 
commercial (COTS) ecosystems with their associated components and infrastructure.

From a technological perspective, this richness in the supply chain is enabled by advances in both 
organizational collaboration technologies and software technology. The collaboration technologies build 
on Internet infrastructure to provide, for example, messaging, process support, team information servers 
(document sharing and configuration management), issue databases, servers for software builds, wikis, 
automated test and analysis tools, and the like. 

Finding 1-2: The growth in the role of software in systems is due to a combination of technological 
advances and a maturing of the supply chain structure associated with software systems develop-
ment at all levels of scale.

Precedent and Innovation in Software

Precedented Software and Externalities

Software development today relies heavily on established architecture and infrastructure component 
configurations, which the committee calls software ecosystems (see Boxes 1.2, 1.3, and 1.4 for elaboration). 
The success of the ecosystem model derives from the natural convergence of component functionalities 
and the associated architectural elements, chiefly protocols and software/service interfaces, through 
which these functionalities are delivered within applications and systems. These functionalities are called 
precedented, in the sense that new users of these functionalities benefit, in terms of design costs and 
risks, from the experience of existing and prior users. Once ecosystems are established, the development 
processes associated with them are often characterized primarily by selection of an ecosystem and then, 
within that ecosystem, tailoring through configuration of settings and the authoring of a relatively very 
small amount of custom software code. Thus, custom development in these areas of convergence gives 
way to product selection and procurement. Indeed, because engineering risks are relatively modest, a 
straight-line sequential process may often be appropriate for development management in these prec-
edented portions of larger systems. 

The emergence of generally accepted ecosystem structures has in recent years become one of the 
enablers of the growth in richness in the supply-chain structure for software systems, which in the 
commercial world has promoted a diversity of suppliers, growth of a market for specialists in com-
ponent-level innovation, and tools geared to development productivity for particular ecosystems. A 

18  DSB, September 2007, Report of the Defense Science Board Task Force on Mission Impact of Foreign Influence on DoD Software, Wash-
ington, DC: Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics. Available online at http://stinet.
dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA473661. Last accessed August 20, 2010.
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countervailing trend in recent years has been the consolidation at the top end of the software vendor 
market through mergers and acquisitions. 

How does this ecosystem phenomenon influence the DoD? First, it should be clear that the DoD 
derives huge benefit from the ecosystem phenomenon, because so many of the business systems required 
by the DoD have requirements that are strongly analogous to commercial requirements. In these cases, 
only modest adaptation of commercial best practices, including choices and configuration of ecosystems, 
can yield major advantage to the DoD in the form of low costs, managed risk, and predictable outcomes. 
Additionally, the software elements of an ecosystem are complemented by a supplier ecosystem of expert 
integrators, consultants, add-in vendors, and the like. In other words, when the DoD’s requirements are 
similar to commercial requirements, the DoD benefits significantly by adopting commercial best prac-
tices where possible. (See Boxes 1.2 and 1.3 for elaboration on the concept and role of ecosystems.) 

Not only are engineering risks reduced for precedented developments, but also there are benefits 
from the richness of the supply chain due to network effects—the positive externalities associated with 
systems adoption.19 When an ecosystem is successful, the commonalities of structures and interfaces 
enable larger numbers of organizations to participate efficiently in the development of large systems, 
providing software components, libraries, frameworks, plug-ins, custom elements, and so on. This makes 
it possible for more suppliers to participate and also reinforces the status of accepted frameworks, broad-
ening the benefits for framework adopters and affording them the opportunity to make good choices at 
the component level while working within the safe conventions of an established ecosystem. 

Indeed, for many of these categories of requirements, it is nearly intractable, from the standpoint 
of cost and risk, to develop “separate but equal” approaches. Not only are these expensive, time-
consuming, and risky, but also the DoD would then need to bear the entire cost of advancing the idio-
syncratic technology, whereas ecosystem participants would benefit from actions by other participants 
to incrementally advance the performance and capability of the ecosystem, its infrastructure, and its 
constituent components. (Of course there are also negative externalities associated with widely adopted 
ecosystems, such as their attractiveness to developers of security exploits and the consequent ease of 
access by adversaries to offensive capability.)

Innovative Requirements and the Activity of Innovative Software Development

The situation becomes more complex and challenging when the DoD requires functionality more 
specifically focused on the defense mission—weapon systems, command and control systems, intel-
ligence analysis systems, and other systems more directly supportive of war-fighting and intelligence. 
They include high-performance embedded systems, large-scale systems with unprecedented architec-
ture, and highly interconnected systems. They often require high degrees of software assurance. The 
functionalities of these systems are more specialized and also, due to the presence of ambitious adver-
saries, constantly evolving in response to changing threats. They require the management of complex 
and evolving requirements. 

Many of these systems are less precedented in the sense that innovation is required in system 
architecture, design, infrastructure, linkages with hardware sensors and effectors, and other respects. 
Technological enablers for the development of these more innovative systems—either with respect to 
innovative functionality or innovative engineering or both—is the principal focus of this report. This 
does not exclude considerations regarding precedented systems, however, because larger systems almost 
always involve a mix of innovative and precedented functionalities and components. Indeed, there are 
few modern defense systems of scale that do not build on technologies extensively drawn from related 
defense systems and from the various mainstream software ecosystems. This means that development 
and acquisition practices must account for this mix of the innovative and the precedented. This mix 

19  Carl Shapiro and Hal R. Varian, 1998, “Information Rules: A Strategic Guide to the Network Economy,” Journal of Technology 
Transfer 25(2):250-253. 
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BOX 1.2  
The Concept of Software Ecosystems

In web applications, there are conventional configurations of server operating systems, relational data-
bases, web servers, application server frameworks, business rules, and other elements that are combined to 
create e-commerce servers. These servers rely, in turn, on the “rich client” ecosystem of a modern client-side 
web browser, which includes not just HTML and basic HTTP, but also technologies such as JavaScript, XML, 
DOM access, and asynchronous HTTP. 

Analogous configurations, with very different sets of interfaces and components, are used to support 
mobile applications (Apple’s iPhone ecosystem and Google’s Android ecosystem are two recent examples), 
business intelligence (OLAP, etc.), enterprise resource planning, and other common functionalities. There 
are competing ecosystems in the commercial world—for example, web application servers can be devel-
oped using Java-based ecosystems such as the platform-independent Java EE (formerly known as J2EE) or 
using the Windows-based .NET Framework, which supports multiple programming languages sharing com-
mon runtime services related to memory management, security, etc. In web applications, there are also open 
source ecosystems, one of which is the so-called LAMP stack, which comprises the Linux operating system, 
the widely adopted Apache web server, the MySQL relational database, and scripting in a language starting 
with the letter “P,” most usually PHP, Python, or Perl. The open-source character of this ecosystem means 
effectively that it operates as a kind of quasi-consortium linking the various stakeholders that participate 
in the ongoing development of the overall architecture, the details of the interfaces, and the code base. 
Regardless of particulars, in most of these ecosystems, choice of programming language is often driven by 
the choice of ecosystem. 

The committee defines a software ecosystem as a conventional structure consisting of a family of in-
frastructural elements that are intended to be combined in a patterned way. Ecosystems include software-
architectural structure, but they can also include configurations of hardware and services platforms. Ecosys-
tems generally provide a reuse of major elements and infrastructure, which can entail strong structural and 
semantic commitments.� Ecosystems often also include documents, tools, practices, and even organizations 
to accompany these elements. The principal benefits include potentially significant reductions in cost, 
mitigation of engineering risk, and up-front agreement on representations and meanings for data that are 
shared within a system or across systems.

It is also significant to note that, if we broadly construct the idea of a software ecosystem, then the 
Internet family of protocols would also be an example. The ecosystem comprising these protocols and 
its evolution have been much studied—one of the results of this is the “hourglass” model. This model il-
lustrates how there can be a diversity of means for provisioning the service associated with a particular 
interface or protocol, such as TCP, and a separate diversity of client applications that build on the service. 
For example, “TCP service” is generally provided as a “layer” above IP, which in turn can be provisioned 
over fiber, wireless, copper, and many other means. TCP, in turn, underlies the web protocol HTTP as well 
as file transfer FTP and many other higher-level services.�

 1 Not all ecosystems involve direct reuse of components. A family of protocols, for example, defines a “means of 
exchange” among system components. Other examples include instruction set architectures (with multiple vendors 
providing chips) and agreed-upon XML or other data exchange representations for shared information.

�  See, e.g., NRC, 2001, The Internet’s Coming of Age, Washington, DC: National Academies Press. Available online at 
http://www.nap.edu/catalog.php?record_id=9823. Last accessed August 20, 2010.

Another example is the relatively small set of widely adopted ecosystem architectures for embed-
ded and real-time control applications (such as the QNX, RTLnix, VxWorks, and Windows CE real-time 
operating systems), the automotive industry’s AUTOSAR (AUTomotive Open System Architecture), and 
the SCADA protocols and interfaces used in the electrical grid. Many government users of embedded and 
real-time capability have taken actions to work with researchers and vendors to develop more capable 
ecosystems that build on modern concepts and abstractions related to processors, languages, and tools.�,� 
Ecosystems are also being adopted or are emerging in areas ranging from robotic systems to data-intensive 
supercomputing.�

The ecosystem phenomenon is now pervasively apparent in commercial industry, and it is actively pro-
moted by leading vendors, in part due to the stability of market structure derived from the network effects. 
Ecosystem or framework “owners” (from the examples above: Apple, Microsoft, Google, Oracle, several 
open-source foundations, and many others) control the trajectory of the overall market for components and 
services associated with that ecosystem, but many firms participate in that “internal” market. Although the 
risks and costs associated with introducing a new ecosystem or framework may be very high, the risks and 
costs for niche providers within an established framework can be low. Additionally, once a community of 
suppliers is engaged within an ecosystem, the overall ecosystem can continue to evolve in response to the 
broad market trajectory and also to new technology developments. Thus, new languages can be added to 
.NET (e.g., functional programming with F#), new libraries and language features can be added within Java 
EE (closures to Java), and so on. This is one of the enablers and sustainers of the global supply chain. 

The committee notes, in addition, that the structure of ecosystems may become more or less exposed 
to developers and users, and indeed entire ecosystems may split or merge. For example, a vendor could 
choose to expose a previously inaccessible internal interface to allow greater customization by customers 
and integrators. In the case of enterprise resource planning (ERP) systems, for example, vendors expose 
interfaces that allow “add-in” developers to provide a diverse set of functionalities tailored to particular 
market segments. This enables a broader diversity of client requirements to be met with less risk to both 
clients and the framework vendor. The ecosystem structure thus evolves according to changing opportuni-
ties and risks for the various stakeholders. Examples of the considerations include network effects (benefits 
of broader adoption of particular “hourglass necks”), vertical integration (reduction in risks associated with 
integrating separately developed components), and lock-in (greater friction in interoperation and choices 
available for component functionalities).

�  See, for example, the workshop convened by the NITRD High Confidence Software and Systems Coordinating 
Group, “National Workshop on High-Confidence Automotive Cyber-Physical Systems,” April 3-4, 2008, Troy, Michigan. 
Available online at http://varma.ece.cmu.edu/Auto-CPS/. Last accessed August 20, 2010. 

�  See also, Jeanette Wing, 2008, “Cyber-Physical Systems Research Charge,” presented at the Cyber-Physical Systems 
Summit, April 24, 2008, St. Louis, MO. Available online at http://www.cra.org/ccc/docs/cps-summit.pdf. Last accessed 
August 20, 2010. 

�  NRC, 2009, Assessing the Impacts of Changes in the Information Technology R&D Ecosystem: Retaining Leadership in 
an Increasingly Global Environment, Washington, DC: National Academies Press. Available online at http://www.nap.edu/
catalog.php?record_id=12174. Last accessed August 20, 2010.
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BOX 1.2  
The Concept of Software Ecosystems

In web applications, there are conventional configurations of server operating systems, relational data-
bases, web servers, application server frameworks, business rules, and other elements that are combined to 
create e-commerce servers. These servers rely, in turn, on the “rich client” ecosystem of a modern client-side 
web browser, which includes not just HTML and basic HTTP, but also technologies such as JavaScript, XML, 
DOM access, and asynchronous HTTP. 

Analogous configurations, with very different sets of interfaces and components, are used to support 
mobile applications (Apple’s iPhone ecosystem and Google’s Android ecosystem are two recent examples), 
business intelligence (OLAP, etc.), enterprise resource planning, and other common functionalities. There 
are competing ecosystems in the commercial world—for example, web application servers can be devel-
oped using Java-based ecosystems such as the platform-independent Java EE (formerly known as J2EE) or 
using the Windows-based .NET Framework, which supports multiple programming languages sharing com-
mon runtime services related to memory management, security, etc. In web applications, there are also open 
source ecosystems, one of which is the so-called LAMP stack, which comprises the Linux operating system, 
the widely adopted Apache web server, the MySQL relational database, and scripting in a language starting 
with the letter “P,” most usually PHP, Python, or Perl. The open-source character of this ecosystem means 
effectively that it operates as a kind of quasi-consortium linking the various stakeholders that participate 
in the ongoing development of the overall architecture, the details of the interfaces, and the code base. 
Regardless of particulars, in most of these ecosystems, choice of programming language is often driven by 
the choice of ecosystem. 

The committee defines a software ecosystem as a conventional structure consisting of a family of in-
frastructural elements that are intended to be combined in a patterned way. Ecosystems include software-
architectural structure, but they can also include configurations of hardware and services platforms. Ecosys-
tems generally provide a reuse of major elements and infrastructure, which can entail strong structural and 
semantic commitments.� Ecosystems often also include documents, tools, practices, and even organizations 
to accompany these elements. The principal benefits include potentially significant reductions in cost, 
mitigation of engineering risk, and up-front agreement on representations and meanings for data that are 
shared within a system or across systems.

It is also significant to note that, if we broadly construct the idea of a software ecosystem, then the 
Internet family of protocols would also be an example. The ecosystem comprising these protocols and 
its evolution have been much studied—one of the results of this is the “hourglass” model. This model il-
lustrates how there can be a diversity of means for provisioning the service associated with a particular 
interface or protocol, such as TCP, and a separate diversity of client applications that build on the service. 
For example, “TCP service” is generally provided as a “layer” above IP, which in turn can be provisioned 
over fiber, wireless, copper, and many other means. TCP, in turn, underlies the web protocol HTTP as well 
as file transfer FTP and many other higher-level services.�

 1 Not all ecosystems involve direct reuse of components. A family of protocols, for example, defines a “means of 
exchange” among system components. Other examples include instruction set architectures (with multiple vendors 
providing chips) and agreed-upon XML or other data exchange representations for shared information.

�  See, e.g., NRC, 2001, The Internet’s Coming of Age, Washington, DC: National Academies Press. Available online at 
http://www.nap.edu/catalog.php?record_id=9823. Last accessed August 20, 2010.

Another example is the relatively small set of widely adopted ecosystem architectures for embed-
ded and real-time control applications (such as the QNX, RTLnix, VxWorks, and Windows CE real-time 
operating systems), the automotive industry’s AUTOSAR (AUTomotive Open System Architecture), and 
the SCADA protocols and interfaces used in the electrical grid. Many government users of embedded and 
real-time capability have taken actions to work with researchers and vendors to develop more capable 
ecosystems that build on modern concepts and abstractions related to processors, languages, and tools.�,� 
Ecosystems are also being adopted or are emerging in areas ranging from robotic systems to data-intensive 
supercomputing.�

The ecosystem phenomenon is now pervasively apparent in commercial industry, and it is actively pro-
moted by leading vendors, in part due to the stability of market structure derived from the network effects. 
Ecosystem or framework “owners” (from the examples above: Apple, Microsoft, Google, Oracle, several 
open-source foundations, and many others) control the trajectory of the overall market for components and 
services associated with that ecosystem, but many firms participate in that “internal” market. Although the 
risks and costs associated with introducing a new ecosystem or framework may be very high, the risks and 
costs for niche providers within an established framework can be low. Additionally, once a community of 
suppliers is engaged within an ecosystem, the overall ecosystem can continue to evolve in response to the 
broad market trajectory and also to new technology developments. Thus, new languages can be added to 
.NET (e.g., functional programming with F#), new libraries and language features can be added within Java 
EE (closures to Java), and so on. This is one of the enablers and sustainers of the global supply chain. 

The committee notes, in addition, that the structure of ecosystems may become more or less exposed 
to developers and users, and indeed entire ecosystems may split or merge. For example, a vendor could 
choose to expose a previously inaccessible internal interface to allow greater customization by customers 
and integrators. In the case of enterprise resource planning (ERP) systems, for example, vendors expose 
interfaces that allow “add-in” developers to provide a diverse set of functionalities tailored to particular 
market segments. This enables a broader diversity of client requirements to be met with less risk to both 
clients and the framework vendor. The ecosystem structure thus evolves according to changing opportuni-
ties and risks for the various stakeholders. Examples of the considerations include network effects (benefits 
of broader adoption of particular “hourglass necks”), vertical integration (reduction in risks associated with 
integrating separately developed components), and lock-in (greater friction in interoperation and choices 
available for component functionalities).

�  See, for example, the workshop convened by the NITRD High Confidence Software and Systems Coordinating 
Group, “National Workshop on High-Confidence Automotive Cyber-Physical Systems,” April 3-4, 2008, Troy, Michigan. 
Available online at http://varma.ece.cmu.edu/Auto-CPS/. Last accessed August 20, 2010. 

�  See also, Jeanette Wing, 2008, “Cyber-Physical Systems Research Charge,” presented at the Cyber-Physical Systems 
Summit, April 24, 2008, St. Louis, MO. Available online at http://www.cra.org/ccc/docs/cps-summit.pdf. Last accessed 
August 20, 2010. 

�  NRC, 2009, Assessing the Impacts of Changes in the Information Technology R&D Ecosystem: Retaining Leadership in 
an Increasingly Global Environment, Washington, DC: National Academies Press. Available online at http://www.nap.edu/
catalog.php?record_id=12174. Last accessed August 20, 2010.
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BOX 1.3  
The Role of the Software Ecosystems for the DoD

There are a number of key advances in software technology that enable the emergence of ecosystems 
and other architecture-based enrichments in supply-chain structure, with consequent benefits to cost and 
agility and also the consequent risks of more diverse sourcing. These advances range from the design of 
software architectures, frameworks, and components to the technical properties of modern programming 
languages, including first-class encapsulation, advanced typing, interface and package structures, and 
framework architectures. 

These and other software technology improvements have also enabled the development and successful 
implementation of a number of conventional structures of software components used for commercial and 
government applications. These conventional structures, here called ecosystems, are families of infrastruc-
tural elements that are combined in a patterned way to construct precedented applications such as many 
business and back-office systems, e-commerce and web applications, and mobile applications. Ecosystems 
include such software-architectural structure as stacks, hardware and software platforms, and software 
frameworks. They often also include the documents, tools, and practices that accompany these elements 
(e.g., Eclipse and ASP.NET). The ecosystems also include a diverse array of software and organizational ser-
vices that support conventional architectural structures. 

The ability to successfully define robust and broadly adoptable standards (de facto or ratified) and to 
stimulate a critical mass of compliant implementations is a significant enabler of ecosystem success. The 
economics of network externalities� play a significant role in reinforcing successful ecosystems (often 
regardless of technical merit) and in guiding the initial stages of promotion of emerging new ecosystems. 
(This issue is elaborated below.)

A particular challenge for the DoD in defining its own ecosystems is to keep up with rapidly evolv-
ing technology and to select those interfaces and component capabilities for which certified components 
and/or trusted suppliers exist. Ecosystems in different categories may share elements and typically support 
diverse ranges of applications. Over the years, the DoD has attempted to codify its preferences regarding 
the components and interfaces in these conventional aggregates with efforts such as the Defense Informa-
tion Infrastructure Common Operating Environment (DIICOE), the Joint Technical Architecture (JTA), and 
the System of Systems Common Operating Environment (SOSCOE). Generally speaking, these are broad 
suites of conventionalized standards and infrastructural elements that have been judged acceptable for 
adoption in systems generally. These suites may identify particular acceptable ecosystems, but they are not 
themselves ecosystems by the committee’s definition (or architectures, in the sense of Chapter 3). 

 1 See, e.g., Carl Shapiro and Hal R. Varian, 1998, Information Rules: A Strategic Guide to the Network Economy, Boston: 
Harvard Business Press.

Modern e-commerce frameworks, for example, are ubiquitous in Internet-based commerce, but they 
have also been adopted as internal coordination frameworks for large-scale DoD systems. 

The ecosystems contribute enormous value to software and systems projects that rely on them by al-
lowing developers to leverage an enormous investment for which costs are spread across a wide base of 
users rather than taking on the full effort and expense of developing an entire software system from the 
ground up. When ecosystems are widely adopted, architectural risks are drastically reduced because prin-
cipal architectural commitments are embodied in the successful ecosystem, and, additionally, the extent 
of value to the DoD can grow over time due to the positive network externalities. Thus, the DoD derives 
benefits from ecosystem adoption, but it must be attentive both to selection criteria and to its ability to 
participate in the overall evolution and development of the ecosystems within which it participates. One 
particular issue is the sustainability of ecosystems that are adopted into systems. In some instances, choices 
may depend more on appraisals of sustainability and network effects (to use economic terms) than on par-
ticular technical characteristics. These sustainability factors may influence engineering risk (see Box 2.2). The 
DoD may derive great benefits from investing in the evolution of the ecosystems in which it participates, 
which enhances both technical fit and sustainability.

As noted above, these ecosystems are enabled by a wide range of computer science and software 
engineering advances. The modern software application frameworks essential to Web-based systems, e-
commerce, and graphical user interfaces of all kinds are enabled by the same advances in programming 
language design that led to languages such as Java, C#, and Ada95. Many of these “component” advances 
and, perhaps more importantly, the principal abstractions and architectural concepts underlying established 
ecosystems, are legacies of past DoD investment in computing technology R&D, primarily in the form of 6.1 
and 6.2 extramural research funding. 

Because of the rapid pace of infrastructural development, the competitive business environment, and 
the need to accommodate new functionality, the ecosystems are generally in a state of continuous evolu-
tion, carefully managed to stage out new increments of value while minimizing costs and risks for existing 
adopters—and thus to retain the benefits of the positive externalities. The evolutionary trajectory for some 
ecosystems is entirely driven by particular vendors, as is the case with Microsoft and .NET or Oracle and 
its E-Business Suite. Others are driven by complex community processes, as in the case of the open-source 
LAMP stack (see above), the Internet protocols themselves, and also some commercial ecosystems, as is the 
case with many of the ecosystems surrounding Java—following the Java Community Process.� The evolution 
may include specific component capabilities, architectural and interfaces structures, and associated tooling 
(as in the case of Visual Studio and .NET).

 2 For more information, see the Java Community Process at http://jcp.org/en/home/index. Last accessed August 20, 2010. 

often creates confusion regarding development processes and other systems engineering choices. “One 
size fits all” models—even for incremental iterative developments—can be dangerous.20

Because of the extent to which modern software builds on existing ecosystem and infrastructural 
elements, modern software development processes entail activities that go well beyond the design and 
authoring of new code. Modern software development is much more about identifying and defining 
appropriate and scalable architectures; selecting, using, and adapting infrastructure such as frameworks, 
components, and libraries; and deploying best practices and tools for collaboration, process support, and 

20  With respect to process (Chapter 2), hybrid approaches may best be employed, for example, combining straight-line pro-
cesses for precedented elements with iteration and prototyping for innovative elements. With respect to architecture (Chapter 
3), modular designs that “concentrate” particular innovative or rapidly evolving functionalities in individual components can 
greatly reduce overall project risk.
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BOX 1.3  
The Role of the Software Ecosystems for the DoD
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frameworks. They often also include the documents, tools, and practices that accompany these elements 
(e.g., Eclipse and ASP.NET). The ecosystems also include a diverse array of software and organizational ser-
vices that support conventional architectural structures. 

The ability to successfully define robust and broadly adoptable standards (de facto or ratified) and to 
stimulate a critical mass of compliant implementations is a significant enabler of ecosystem success. The 
economics of network externalities� play a significant role in reinforcing successful ecosystems (often 
regardless of technical merit) and in guiding the initial stages of promotion of emerging new ecosystems. 
(This issue is elaborated below.)

A particular challenge for the DoD in defining its own ecosystems is to keep up with rapidly evolv-
ing technology and to select those interfaces and component capabilities for which certified components 
and/or trusted suppliers exist. Ecosystems in different categories may share elements and typically support 
diverse ranges of applications. Over the years, the DoD has attempted to codify its preferences regarding 
the components and interfaces in these conventional aggregates with efforts such as the Defense Informa-
tion Infrastructure Common Operating Environment (DIICOE), the Joint Technical Architecture (JTA), and 
the System of Systems Common Operating Environment (SOSCOE). Generally speaking, these are broad 
suites of conventionalized standards and infrastructural elements that have been judged acceptable for 
adoption in systems generally. These suites may identify particular acceptable ecosystems, but they are not 
themselves ecosystems by the committee’s definition (or architectures, in the sense of Chapter 3). 

 1 See, e.g., Carl Shapiro and Hal R. Varian, 1998, Information Rules: A Strategic Guide to the Network Economy, Boston: 
Harvard Business Press.

Modern e-commerce frameworks, for example, are ubiquitous in Internet-based commerce, but they 
have also been adopted as internal coordination frameworks for large-scale DoD systems. 

The ecosystems contribute enormous value to software and systems projects that rely on them by al-
lowing developers to leverage an enormous investment for which costs are spread across a wide base of 
users rather than taking on the full effort and expense of developing an entire software system from the 
ground up. When ecosystems are widely adopted, architectural risks are drastically reduced because prin-
cipal architectural commitments are embodied in the successful ecosystem, and, additionally, the extent 
of value to the DoD can grow over time due to the positive network externalities. Thus, the DoD derives 
benefits from ecosystem adoption, but it must be attentive both to selection criteria and to its ability to 
participate in the overall evolution and development of the ecosystems within which it participates. One 
particular issue is the sustainability of ecosystems that are adopted into systems. In some instances, choices 
may depend more on appraisals of sustainability and network effects (to use economic terms) than on par-
ticular technical characteristics. These sustainability factors may influence engineering risk (see Box 2.2). The 
DoD may derive great benefits from investing in the evolution of the ecosystems in which it participates, 
which enhances both technical fit and sustainability.

As noted above, these ecosystems are enabled by a wide range of computer science and software 
engineering advances. The modern software application frameworks essential to Web-based systems, e-
commerce, and graphical user interfaces of all kinds are enabled by the same advances in programming 
language design that led to languages such as Java, C#, and Ada95. Many of these “component” advances 
and, perhaps more importantly, the principal abstractions and architectural concepts underlying established 
ecosystems, are legacies of past DoD investment in computing technology R&D, primarily in the form of 6.1 
and 6.2 extramural research funding. 

Because of the rapid pace of infrastructural development, the competitive business environment, and 
the need to accommodate new functionality, the ecosystems are generally in a state of continuous evolu-
tion, carefully managed to stage out new increments of value while minimizing costs and risks for existing 
adopters—and thus to retain the benefits of the positive externalities. The evolutionary trajectory for some 
ecosystems is entirely driven by particular vendors, as is the case with Microsoft and .NET or Oracle and 
its E-Business Suite. Others are driven by complex community processes, as in the case of the open-source 
LAMP stack (see above), the Internet protocols themselves, and also some commercial ecosystems, as is the 
case with many of the ecosystems surrounding Java—following the Java Community Process.� The evolution 
may include specific component capabilities, architectural and interfaces structures, and associated tooling 
(as in the case of Visual Studio and .NET).

 2 For more information, see the Java Community Process at http://jcp.org/en/home/index. Last accessed August 20, 2010. 

validation. Indeed, it is generally recognized that, for large systems in industry and aerospace, the most 
significant costs are generally associated with gathering functional and non-functional requirements, 
developing architecture and design, managing process, and achieving assurance—and somewhat less 
with the writing and evolution of code.21 (Issues related to innovative systems for defense are addressed 
in two chapters of this report—Chapter 2 focuses on requirements, and Chapter 3 focuses on architecture 
and agility at scale.)

21  See, for example, economics studies by Barry Boehm, studies of the IBM Rational Unified Process, and other work that shows 
that the proportion of coding in the overall process is diminishing. See, RTI, 2002, The Economic Impacts of Inadequate Infrastructure 
for Software Testing, Planning Report 02-3, RTI Project Number 7007.011. Available online at http://www.nist.gov/director/
planning/upload/report02-3.pdf. Last accessed August 20, 2010.
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BOX 1.4  
The Concept of Alignment

As noted earlier, complex evolving software ecosystems and rich supply chains are enabled by relatively 
recent technological developments, although the market forces have been present for a much longer time. 
The benefit to government and firms alike is in how software is managed, with the breakthrough result of 
a better alignment of IT structures with operational structures in organizations. This affords firms greater 
flexibility in buy-versus-build decisions. But, more importantly, it enables many organizations to outsource 
common infrastructure such as databases, application servers, and software frameworks, and to in-source 
only those critical elements that provide unique capabilities and advantage over competitors. This amounts 
to an “escape” from the need to redundantly develop infrastructural capabilities. 

The committee uses the term “alignment” to refer to this ability to in-source only key differentiators and 
organization-specific capabilities. Generally speaking, alignment is achieved incrementally. As capabilities 
that previously were innovative become commonplace across firms, the task of advancing them (from the 
standpoint of a technology user organization such as DoD back-office business functions) is shifted from 
internal resources to external ones (vendors and other outsource suppliers), enabling the firms to redirect 
their internal resources to new areas where they can differentiate themselves from their competitors. This 
is how, for example, the central database for many firms evolved from early network and hierarchical data-
bases into relational transactional databases into virtualized application server capabilities wrapped around 
web servers and relational databases, with most of the functionality being provided by outside vendors or 
through open-source de facto consortia as in the LAMP stack.

The DoD also benefits from this when it can shift from expensive custom components (that it must 
maintain throughout an entire system lifecycle) to off-the-shelf components that are constantly being 
improved upon by their vendors in response to market forces. Thus, as technologies evolve and “commod-
itize,” there is a general trend to shift function from in-source to outsource.� An issue for the DoD, however, 

 1 But this is not always the case, as new dimensions of capability and differentiation emerge for formerly commod-
itized infrastructural elements, as is happening now for data centers and their architectures.

as for other entities seeking to maintain leadership in software use and development, is how to effectively 
track the evolution of the conventional interfaces and architectures and not fall behind. Another issue, more 
directly related to innovation, is how to work with the broad technology community to ensure that—where 
the DoD has leading demand—its requirements can be met as the infrastructure evolves. Historically, the 
DoD has accomplished this in many core IT areas, as noted in multiple studies. �,�,� 

Indeed, when infrastructures are traced historically, it is evident that many of the fundamental archi-
tectural concepts originated in or were stimulated by DoD-sponsored research. For example, many of the 
architectural elements of Linux can be traced back to BSD Unix and even Multics. This point relates to 
the discussion later in the report regarding the role of the DoD in architecture.

From the defense perspective, this yields both benefit and risk. Expertise in critical component and 
infrastructural technologies is concentrating, and the capability of those components is rapidly advancing. 
The DoD cannot so easily “build” when other players are all “buying,” even when there may be assurance 
challenges with respect to component providers. If the DoD makes too many “build” decisions for infra-
structural capabilities, costs and risks escalate to the point of intractability. This is because the DoD would 
have to bear the entire cost and risk of developing and sustaining its own custom version of the technol-
ogy. The established implementations of that technology may have been evolving in the larger commercial 
market over a period of years, with effective investments spread across a multitude of vendors and users.

 2 NRC, 1997, Ada and Beyond: Software Policies for the Department of Defense, Washington, DC: National Academies 
Press. Available online at http://www.nap.edu/catalog.php?record_id=5463. Last accessed August 20, 2010.

 3 NRC, 2000, Making IT Better: Expanding Information Technology Research to Meet Society’s Needs, Washington, DC: 
National Academies Press. Available online at http://www.nap.edu/catalog.php?record_id=9829. Last accessed August 20, 
2010.

 4 NRC, 1997, The Evolution of Untethered Communications, Washington, DC: National Academies Press. Available 
online at http://www.nap.edu/catalog.php?record_id=5968. Last accessed August 20, 2010.

As noted both in the workshop report issued by this committee22 and in the recent Software Engi-
neering Institute (SEI) report on ultra-scale systems,23 these issues may be made more challenging for 
modern interconnected defense systems due to overall scale and complexity, and particularly in require-
ments and architecture. These systems experience a great deal of architectural risk due to the often long 
delay until the consequences of early engineering decisions are felt and understood. Additionally, the 
decentralized governance models that are typical for large-scale interlinked systems (ultra-scale, net-
centric, system of systems) can have both positive and negative effects on risk. Also, overly conservative 
choices regarding how to measure progress and earned value can lead toward local optima but away 
from overall systems-scale success (see Chapter 2). Finally, over-commitment to particular requirements 
early in the process can result in lost opportunities for radical cost savings or capability improvements 
downstream. These risks could potentially be mitigated through innovation in both technological and 
process measures. 

22  NRC, 2007, Summary of a Workshop on Software-Intensive Systems and Uncertainty at Scale, Washington, DC: National Academies 
Press. Available online at http://books.nap.edu/catalog.php?record_id=11936. Last accessed August 20, 2010.

23  Software Engineering Institute (SEI), 2006, Ultra-Large-Scale Systems: The Software Challenge of the Future, Pittsburgh, PA: 
Carnegie Mellon University. Available online at http://www.sei.cmu.edu/library/assets/ULS_Book20062.pdf. Last accessed 
August 20, 2010. 
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BOX 1.4  
The Concept of Alignment

As noted earlier, complex evolving software ecosystems and rich supply chains are enabled by relatively 
recent technological developments, although the market forces have been present for a much longer time. 
The benefit to government and firms alike is in how software is managed, with the breakthrough result of 
a better alignment of IT structures with operational structures in organizations. This affords firms greater 
flexibility in buy-versus-build decisions. But, more importantly, it enables many organizations to outsource 
common infrastructure such as databases, application servers, and software frameworks, and to in-source 
only those critical elements that provide unique capabilities and advantage over competitors. This amounts 
to an “escape” from the need to redundantly develop infrastructural capabilities. 

The committee uses the term “alignment” to refer to this ability to in-source only key differentiators and 
organization-specific capabilities. Generally speaking, alignment is achieved incrementally. As capabilities 
that previously were innovative become commonplace across firms, the task of advancing them (from the 
standpoint of a technology user organization such as DoD back-office business functions) is shifted from 
internal resources to external ones (vendors and other outsource suppliers), enabling the firms to redirect 
their internal resources to new areas where they can differentiate themselves from their competitors. This 
is how, for example, the central database for many firms evolved from early network and hierarchical data-
bases into relational transactional databases into virtualized application server capabilities wrapped around 
web servers and relational databases, with most of the functionality being provided by outside vendors or 
through open-source de facto consortia as in the LAMP stack.

The DoD also benefits from this when it can shift from expensive custom components (that it must 
maintain throughout an entire system lifecycle) to off-the-shelf components that are constantly being 
improved upon by their vendors in response to market forces. Thus, as technologies evolve and “commod-
itize,” there is a general trend to shift function from in-source to outsource.� An issue for the DoD, however, 

 1 But this is not always the case, as new dimensions of capability and differentiation emerge for formerly commod-
itized infrastructural elements, as is happening now for data centers and their architectures.

as for other entities seeking to maintain leadership in software use and development, is how to effectively 
track the evolution of the conventional interfaces and architectures and not fall behind. Another issue, more 
directly related to innovation, is how to work with the broad technology community to ensure that—where 
the DoD has leading demand—its requirements can be met as the infrastructure evolves. Historically, the 
DoD has accomplished this in many core IT areas, as noted in multiple studies. �,�,� 

Indeed, when infrastructures are traced historically, it is evident that many of the fundamental archi-
tectural concepts originated in or were stimulated by DoD-sponsored research. For example, many of the 
architectural elements of Linux can be traced back to BSD Unix and even Multics. This point relates to 
the discussion later in the report regarding the role of the DoD in architecture.

From the defense perspective, this yields both benefit and risk. Expertise in critical component and 
infrastructural technologies is concentrating, and the capability of those components is rapidly advancing. 
The DoD cannot so easily “build” when other players are all “buying,” even when there may be assurance 
challenges with respect to component providers. If the DoD makes too many “build” decisions for infra-
structural capabilities, costs and risks escalate to the point of intractability. This is because the DoD would 
have to bear the entire cost and risk of developing and sustaining its own custom version of the technol-
ogy. The established implementations of that technology may have been evolving in the larger commercial 
market over a period of years, with effective investments spread across a multitude of vendors and users.

 2 NRC, 1997, Ada and Beyond: Software Policies for the Department of Defense, Washington, DC: National Academies 
Press. Available online at http://www.nap.edu/catalog.php?record_id=5463. Last accessed August 20, 2010.

 3 NRC, 2000, Making IT Better: Expanding Information Technology Research to Meet Society’s Needs, Washington, DC: 
National Academies Press. Available online at http://www.nap.edu/catalog.php?record_id=9829. Last accessed August 20, 
2010.

 4 NRC, 1997, The Evolution of Untethered Communications, Washington, DC: National Academies Press. Available 
online at http://www.nap.edu/catalog.php?record_id=5968. Last accessed August 20, 2010.

Commercial Software Supply Chains

The DoD’s supply chain has become increasingly complex. One driver has been the commercial 
success of software ecosystems that provide a foundation on which to build defense systems. Another 
driver has been the increasing use of tools for collaboration at a distance. These are the same technologies, 
infrastructure, and practices that have enabled the globalization of diverse services. (Indeed because of 
this it is easy to erroneously conflate supply-chain richness with the globalization phenomenon.) 

The factors driving the supply-chain structure include not only the direct costs of development, but 
also the resulting management agility (such as the ability to revisit choices in infrastructure, technology, 
and particular suppliers) and rapid access to specialized expertise (domain knowledge and require-
ments, code development, vendor components, testing and evaluation, process structuring, software 
architecture, and so on). For commercial applications, these factors combine to enable large firms to 
quickly adapt and enhance their business models to address competitive challenges. The DoD can and 
should realize similar advantages, but of course it also needs to address the risks, including both the 
sourcing risks intrinsic in this kind of supply structure and the particular requirements risks that derive 
from the defense mission. 

The complexity of software supply-chain structures is evident in diverse sectors. A single firm in 
a sector such as financial services, health care, or manufacturing may develop software at dozens of 
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separate sites around the world. This software is likely to depend on infrastructural components from 
dozens of vendors, each of whom may also have global operations. This is how the advantages of cost, 
agility, and expertise are realized and fundamental new functionalities are achieved, for example, those 
involving cross-cutting capabilities related to business intelligence or enterprise process management 
(both of which are highly relevant to the defense mission). But the risks must also be addressed—when 
the software components are interconnected within a single system, all of these components may be 
“behind the firewall” and with direct access to mission data. (Issues related to assurance, including 
challenges related to supply chains, are addressed later in this report, in Chapter 4.)

The market forces that drive the complexity of the modern supply-chain structure for software 
systems have long been present, but the supply chain and ecosystem richness are only relatively recent 
phenomena, enabled by the richness of modern software technology. The enabling technologies include 
modern programming languages, system software components, network protocol development, object-
oriented frameworks, emerging service-oriented concepts (e.g., cloud, SAAS, SOA), advanced tooling 
for team development and collaboration, and process support. Indeed, a number of these core ideas are 
results of DARPA and Service funding of research projects in prior decades. 

An important element of the globalization phenomenon is the pace at which global suppliers outside 
the United States, in many countries, are moving up the value chain—that is accounting for an increas-
ing share of the overall value embodied in a product or service. Global suppliers, which in the early 
days focused primarily on low-technology offerings such as providing black-box testing services for 
Web-based software systems developed in the United States and elsewhere or on provisioning remote 
first-tier technical support capability, are now developing the software for those systems directly, as well 
as engaging in requirements analysis, architecture, and design for those systems. This commercial trend, 
accelerated through direct strategic investment by governments, exacerbates the DoD concerns about 
the mission impact of foreign influence on DoD software—namely, the risk of unwanted functionality 
in delivered software (and hardware as well, where the assurance challenges can be greater). 

Finding 1-3: The DoD relies fundamentally on mainstream commercial components, supply chains, 
and software ecosystems for both business systems and many mission systems. Nonetheless, the 
DoD has special needs in its mission systems driven by the growing role of software in systems. 
As a result, the DoD needs to address directly the challenge of building on and, where appropriate, 
contributing to the development of mainstream software that can contribute to its mission.

DoD Software Supply Chains

The DoD is aggressively applying these ideas for business applications. In the case of IT systems 
and components such as databases, operating systems, and business systems applications, the DoD can 
align well with commercial products being produced to support industry.

At the same time, however, software has become a critical differentiator in most mission-related 
systems and services—and (as noted above) it is growing in the extent and depth of its impact every 
year. It is safe to claim, in fact, that the largest opportunities for successful differentiation in new mission 
systems are very often derived from software-manifest capabilities. It is therefore not surprising that the 
largest risks in systems development are associated with the software production. 

Almost always, DoD mission systems rely on a combination of innovative functionality and capa-
bilities already present in established ecosystems. The DoD must obviously leverage the extensive 
commercial development of software processes, methods, tools, architectures, and products. But, as the 
committee notes below, the DoD must also take action, as it has done historically, to foster the capabilities 
of its supply chain, broadly construed, to enable it to stay ahead of its rapidly advancing adversaries. 
In particular, this new reality poses challenges not only for developing innovative functionalities, but 
also for assurance and ecosystems leadership.

As noted above, larger-scale innovative mission-focused applications generally include both innova-
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tive custom software components and components based on existing ecosystems. As a result, the DoD 
necessarily relies to some extent on the extant supply-chain structures with their diversity of suppliers. 
This creates both technical and management risks related to assuring control over functionality and 
assurance.24 These challenges focus on understanding the extent and nature of supply-chain and eco-
system dependencies, on developing both incentives and technical means to mitigate assurance risks, 
and on understanding the leadership challenges with respect to sustaining some control (or at least 
awareness) over future trajectories where there are necessary ecosystem dependencies. 

Governments are recognizing the difference between component-level participation in an ecosystem-
associated supply chain and architectural leadership of that ecosystem.25 U.S. firms have developed and 
led the evolution of most of the key ecosystems on which the DoD and the entire industry rely. This is 
a consequence of technological and market leadership, and the technological aspects of this leadership, 
in turn, are in large measure consequences of the long record of R&D investment in core computer and 
information technologies by DARPA and the Services and a small number of other Networking and 
Information Technology Research and Development (NITRD) agencies, principally the National Science 
Foundation (NSF) and, historically, NASA. These investments are now diminished (Box 1.5). The com-
mittee considers priorities regarding this investment (Chapter 5) as well as arguments for and against 
a scaling up of this investment (this chapter) and means by which the investment can be evaluated and 
optimized (Chapter 5).

Summary—Software and the DoD

Software is highly significant for the DoD and becoming more so. The DoD depends not only on 
the ability to develop new code, but also on commercial software capability, particularly as manifested 
in established evolving software ecosystems. Software supply chains are growing in scale, complexity, 
and geography, and the influence of these shifts on DoD software must be considered. 

Although the United States continues to retain innovation leadership in software areas important 
to the DoD, there are three proximate factors that could cause the loss of that leadership. First, as noted 
above and documented in Box 1.5, the DoD investment in software producibility has in recent years 
diminished considerably from its prior levels, which had been sustained for more than three decades. 
Second, concomitant with the diminishing of U.S. investment is a ramping up of investment by foreign 
governments in their national IT capabilities, including in software.26 The third factor, also as noted 
above, is the inexorable trend of globalization and rich supply chains.

Of course, very strong shifts overseas have happened in other sectors, such as consumer electronics, 
and there is still debate regarding the strategic impact of these shifts. It is the committee’s view, however, 
that the leveraged role of software and the particular special role of software in defense and national 

24  DSB, September 2007, Report of the Defense Science Board Task Force on Mission Impact of Foreign Influence on DoD Software, Wash-
ington, DC: Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics. Available online at http://stinet.
dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA473661. Last accessed August 20, 2010. 

25  “Internet—New Shot in the Arm for US Hegemony,” China Daily, January 22, 2010. Available online at http://www.china-
daily.cn/china/2010-01/22/content_9364327_3.htm. Last accessed August 20, 2010. 

26  See Organisation for Economic Co-Operation and Development (OECD), Information Technology Outlook 2006, Paris, France: 
OECD. Available online at http://www.oecd.org/document/10/0,3343,en_2649_37441_37486858_1_1_1_37441,00.html#TOCat. 
Accessed February 26, 2008. Also see NRC, 2009, Assessing the Impacts of Changes in the Information Technology R&D Ecosystem: 
Retaining Leadership in an Increasingly Global Environment, Washington, DC: National Academies Press. Available online at http://
www.nap.edu/catalog.php?record_id=12174. Last accessed August 20, 2010. See also Ashish Arora and Alfonso Gambardella, 
eds., 2005, From Underdogs to Tigers: The Rise and Growth of the Software Industry in Brazil, China, India, Ireland, and Israel, Oxford, 
England: Oxford University Press, pp. 171-206. Rafiq Dossani and Martin Kenney, 2007, “The Evolving Indian Offshore Services 
Environment: Greater Scale, Scope and Sophistication,” Sloan Industry Studies Working Papers, Number WP-2007-34, 2007. Avail-
able at http://www.industry.sloan.org/industrystudies/workingpapers/index.php. Accessed February 26, 2008. OECD, 2006, 
“China Will Become World’s Second Highest Investor in R&D by End of 2006, Finds OECD,” OECD Online, http://www.oecd.
org/document/26/0,2340,en_2649_201185_37770522_1_1_1_1,00.html. Accessed February 26, 2008. 
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BOX 1.5  
The Decline in Federal Investment in Software Producibility Research

The extent and structure of federal IT-related R&D investment are documented in a series of reports 
published by the National Coordination Office (NCO) for Networking and Information Technology Re-
search and Development (NITRD). These reports have been issued annually since the first such report 
was included in the FY1992 federal budget submission, and they document research sponsorship from 
a diverse set of federal agencies related to IT and networking. NITRD is a multi-agency coordination 
activity, which operates under the auspices of the White House Office of Science and Technology 
Policy (OSTP) and the Office of Management and Budget (OMB), but the funding that is reported is 
in the individual agencies’ budgets and generally under their control. The reports include extensive 
narrative descriptions of research accomplishments and plans, as well as a budget matrix that shows 
investment levels by agency, organized into a set of eight categories.1 The budget matrix shows both 
proposed amounts for the forthcoming fiscal year and approximate actual amounts for the then-cur-
rent fiscal year. 

There are two categories that relate to software producibility—Software Design and Productivity 
(SDP) and High Confidence Software and Systems (HCSS). The committee analyzed the trends in these 
two categories over the past decade and related its findings to the overall NITRD-coordinated budget 
that totals investment in all eight categories. (Note: The analysis excluded National Institutes of Health 
(NIH) data. This was done for two reasons: First, NIH changed its reporting methodology in 2010, which 
creates non-commensurability for a longitudinal analysis. Second, NIH allocations among the NITRD 
topic categories were determined through the use of an automated text-based pattern-matching algo-
rithm. The committee believes this approach, particularly in topics related to software production gen-
erally (rather than, for example, the production of software for particular applications), is likely to lead 
to significant over-reporting of application software development projects as SDP or HCSS research.)

The principal result of the analysis is that the SDP and HCSS investments, separately and combined 
and in absolute dollars and as a percentage of the NITRD budget, have dropped considerably in the past 
5 years. At the same time, the overall NITRD-coordinated budget has grown. For example, from 2004 to 
2010 the combined allocation to SDP and HCSS fell by 45 percent, while the overall NITRD budget more 
than doubled. On a percentage basis, the combined SDP and HCSS allocation fell by a factor of almost 
four, from 24.6 percent of the NITRD total in 2004 to just 6.5 percent of the total in 2010.

One of the challenges in this type of budget analysis is the breadth of the categories and the im-
precision of category boundaries. This challenge is unavoidable in the analysis of research budgets, 
but it is particularly difficult in the analysis of NITRD budgets because the different agency staff may 
apply slightly different criteria when categorizing diverse and innovative research projects. When cat-
egory labels change, for example, with the introduction of the category of Cybersecurity and Informa-
tion Assurance (CSIA), it is very likely that some projects in HCSS were relabeled as CSIA. Although it 
would be desirable to assess each grant for its relevance to the categories or, better, to the particular 
technical disciplines that support “software producibility,” this would be infeasible because of the large 
number of research grants and contracts and also because agencies are reluctant to share detailed 
data regarding awards and category assignments. An analysis of the narrative descriptions associated 
with the categories in the NITRD report suggests that there is an acceptably close alignment of SDP 
and HCSS with the overall investment that might directly relate to software producibility. The narrative 
descriptions do reveal some areas included in SDP or HCSS that might not be included in a “software 
producibility” category, for example, due to application specificity or other attribute.

Taking all this into consideration, the committee judges that the combination of SDP and HCSS is 
sufficiently close to a notional category of software producibility that we accept it as a surrogate for over-
all investment across NITRD agencies (NIH excluded) in research that relates to the present report. 

1 The categories have slowly evolved over the years, but categories related to software have remained un-
changed for the past decade.
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Figure 1.5.1

Figure 1.5.1 Investment in HCSS and SDP by agency and by year. NOTE: Office of the Secretary of Defense 
(OSD), Defense Information Systems Agency (DISA), and Service investments have been rolled up into 
a single category that covers defense agency investments other than those in DARPA and the National 
Security Agency (NSA). NIH amounts excluded for reasons noted in the text.
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Figure 1.5.2 Total NITRD investment by agency and by year. NOTE: OSD, DISA, and Service investments have 
been rolled up into a single category that covers defense agency investments other than those in DARPA 
and NSA. NIH amounts excluded for reasons noted in the text. 
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More details regarding the state of research investment are shown in Figures 1.5.1 and 1.5.2. The 
former shows the investment by year and by agency for HCSS (left side) and SDP (right side). It is evident 
from Figure 1.5.1, for example, that NASA, DARPA, and the Department of Energy (DOE) have stepped 
almost completely away from engaging in research related to SDP. Figure 1.5.2 shows the overall extent 
of the NITRD investment in all eight categories of research related to networking and IT. 

Two trends are immediately apparent from these charts: there was a surge of SDP and HCSS in-
vestment in the mid-2000s by several agencies—DARPA, DOE/National Nuclear Security Administration 
(NNSA), and NASA—followed by a precipitous drop in their investments and in the total investment. 
The result is that NSF is now the dominant source of investment in both categories. Figure 1.5.3 shows 
the percentage of total NITRD investment in SDP and HCSS. It illustrates that while the total NITRD 
investment more than doubled over the past decade, the percentage of investment in SDP and HCSS 
fell off sharply. 
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Figure 1.5.3 Percentage of total NITRD investment in either SDP or HCSS.

Box 1-5 Continued

security systems of all kinds make this kind of shift much more consequential for defense software 
producibility and for U.S. ability to advance overall defense system capability. 

In exploring the role of the DoD in advancing software producibility, which is the topic of Chapters 2, 
3, and 4, the committee considers the interplay of four factors:

1.	 Productivity. The DoD benefits from efficiencies gained in the development of innovative function-
ality through advances in mainstream software producibility. For mission systems, there are particular 
challenges relating to requirements and validation, architecture and modeling, process and measure-
ment, and tools and language systems.

2.	 Innovation. The DoD relies on technologically enabled advances in software producibility to 
enable the more effective creation of unprecedented systems and the interconnecting of existing and 
new systems to deliver advanced functionality with acceptable cost and risks. 
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3.	 Assurance. The DoD faces new challenges to addressing the risks associated with diverse and 
international supply chains, including the development of practices and technologies for software 
assurance.

4.	 Ecosystems and infrastructure. The DoD unavoidably relies on mainstream software ecosystems in 
defense systems and therefore has a stake in the processes by which those ecosystems evolve and are 
led.

The role of The DoD in addressing its software needs

Given the importance of software to the DoD, and to its mission systems in particular, and given 
also the ongoing rapid advances in software capability worldwide, it is vital to ensure that the depart-
ment can not only meet its software needs now, but also sustain its software leadership well into the 
future. A key question addressed by the committee is to what extent the DoD, without providing its own 
explicit R&D stimulus, can rely on industry—specifically the domestic defense industrial base and sup-
porting vendors—to produce software innovations in areas of defense significance at a rate fast enough 
to allow the DoD to fully meet software requirements and remain ahead of potential adversaries. This 
leadership must be with respect to both the capability of systems and effective defense against attacks 
on those systems. 

As noted above, the DoD has particular requirements that must be dealt with on systems that are 
both very large scale and have life-critical mission requirements. Although these areas may overlap with 
civil and commercial needs, very often the DoD requirements are more sophisticated and cutting-edge 
than those in the rest of the marketplace. Also, DoD adversaries may choose to “attack” software in 
the supply chain during development phases of a project—security is much more than about attacks 
staged over networks during system operations. Additionally, major DoD development projects are 
structured in a way that often keeps development teams at arm’s length from the key operational mis-
sion stakeholders and from overall project management. For these reasons, technological advancement 
would significantly benefit the DoD’s ability to produce the software it needs. The areas identified in 
this report, and particularly in Chapter 5, are areas where the committee sees the DoD as having leading 
demand. The committee notes that the issue is not areas where the DoD has “unique” requirements, but 
rather the much broader category of areas where it has leading demand with respect to particular kinds 
of requirements. One obvious example is software assurance, where DoD and national security needs 
may go well beyond even what is being developed for commercial financial services or health care 
devices. Another example is the risk-managed development of unprecedented architectural design of 
the kind required to create high-interconnectivity systems such as FCS, net-centric systems, and many 
other major defense platforms that have few commercial precedents or analogs.

The committee notes that even where industry is aggressively innovative, it may not have sufficient 
incentives to produce the technology and supporting tools necessary to generalize application-specific 
software innovations. Additionally, the technologies may manifest innovative concepts, but in a way 
that cannot be readily adopted by the DoD, for example due to the safety, reliability, and assurance 
considerations particular to defense applications that, to be addressed, require further technological 
innovation. 

It would thus be overly optimistic to conclude that DoD needs such as these will somehow be 
adequately addressed through a combination of demand-pull from the DoD and technology-push from 
the defense sector (i.e., firms that primarily supply the DoD) or the broader commercial IT sector. In 
many other industries and infrastructures, this may be a legitimate conclusion, and in these areas the 
best policy may be for the DoD to follow the market. However, this is not generally true for software 
technology, particularly as needed for defense mission systems, where the DoD has leading demand in 
multiple critical areas, as detailed later in this report.



Copyright © National Academy of Sciences. All rights reserved.

Critical Code:  Software Producibility for Defense
http://www.nap.edu/catalog/12979.html

36	 CRITICAL CODE: SOFTWARE PRODUCIBILITY FOR DEFENSE

Finding 1-4: The DoD’s needs will not be sufficiently met through a combination of demand-pull 
from the military and technology-push from the defense or commercial IT sectors. The DoD cannot 
rely on industry alone to address the long-term software challenges particular to defense. 

The above finding is based on consideration of both the history of software innovation and the set 
of future needs identified in this study.

Commercial R&D Investment

Defense contractors do invest extensively in software research, but generally speaking it is focused 
on manifesting specific capabilities in supporting the competitiveness of bids through differentiated 
skills and products. Commercial IT firms also invest in software research and form an important part 
of the defense IT supply chain, but may not necessarily carry out research aimed at meeting the DoD’s 
needs. Both defense and commercial IT firms lack strong incentives to invest directly in broad-impact 
areas such as these, particularly when many of the advantages derived from the investment are non-
appropriable, in that the associated intellectual property cannot be readily controlled and as a conse-
quence the benefits may readily diffuse not only into the supply chain for the contractor but also to 
competitors (more on this point is given below).27 Indeed, it is important to note that there are certain 
technological improvements that may in fact not necessarily be good for business, even when the DoD 
derives capability and acquisition advantage. 

Additionally, and perhaps most importantly, there is the issue of horizon. Prudent business deci-
sions are generally informed by return-on-investment calculations, which depend on (1) appropriability, 
(2) timeliness, (3) investment risk, and (4) measurability/observability of return. Many improvements 
in practices, for example, come only after sustained commitments and much technical exploration (after 
which benefits may rapidly diffuse across the industry). Additionally, benefits, even when judged sig-
nificant by technical leaders, may be difficult to quantify, due to the measurement challenges that persist 
in software and the software-related aspects of systems engineering (see Chapter 2). In other words, 
in investing in software producibility, all four of the elements above are problematic. And therefore, 
in a competitive market, individual companies generally have few market incentives for such invest-
ments. These factors tend to drive internal R&D investments in contractors toward a combination of 
addressing business needs expected 1 to 2 years in the future and avoiding technological surprise from 
competitors. Government research and development in software producibility, from a purely structural 
perspective, can be less focused on appropriability and investment risk. Additionally, government can 
invest directly in improving measurement capability, when that is a source of risk (see the discussion 
of measurement in Chapter 5). 

The Challenge of ROI and Appropriability

It is an economic reality that it is difficult for a firm to make a compelling case of return on invest-
ment (ROI) to undertake innovations when those innovations have a non-appropriable character, which 
is to say that the intellectual property associated with the innovations diffuses broadly into the engi-
neering discipline and the economy. This is a familiar issue to those involved in defining industry-wide 
best practices, standards, and other commonalities. Many of the most important and highly leveraged, 
government-originated innovations (undertaken by both academia and industry) are in the economic 
“commons.” This creates challenges in measuring value created, because the value has broad and dif-

27  See, e.g., NRC, 2002, Information Technology, Research, Innovation, and E-Government, Washington, DC: National Academies 
Press, p. 101. Available online at http://www.nap.edu/catalog.php?record_id=10355. Last accessed August 20, 2010.
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fuse benefits.28 A recent NRC report on software and the economy29 notes that “the economic rationale 
for government investment is based on the non-appropriability of many significant IT innovations, 
including the most widely used idiomatic data structures and algorithms, as well as design and archi-
tectural patterns. Moreover, the IT industry relies on a number of technical and process commonalities 
or standards such as the suite of Internet protocols, programming languages, core design patterns, and 
architectural styles.” These innovations effectively “raise everyone’s boat” in the same way as do govern-
ment investments in bioscience, health care, and other strategically important scientific disciplines. This 
includes many of the most highly leveraged areas of software research such as improvements in abstrac-
tion mechanisms, design notations, programming languages, software analysis and model checking, 
basic algorithms, design patterns and architecture concepts, and other core techniques. This is not to say 
that industry does not invest in non-appropriable results—it does so extensively in the area of standards 
and also through investment in university projects and other activities. But (for the reasons cited here) 
the incentives to sustain this investment are lower than for proprietary development efforts.

The committee notes, in addition, that when research results are not appropriable, researchers are 
less likely to be able to secure patents. (Thus, it can be safely hypothesized that direct revenues from 
licensing university-owned patents are likely to be significant underestimates of the value created by 
federally funded research, especially in the case of software-related university inventions.)

To complicate matters further, the manner in which software is protected as intellectual property 
is often distinct from what is done in other fields such as biomedicine. A software system is often a 
combination of differently protected elements, organized following architectural elements of several 
ecosystems along with custom elements. There is often considerable intellectual property embedded in 
the architectural designs themselves, even in the absence of components that populate those designs. 
All this combines to make the non-appropriable, yet valuable, aspects of the work hard to identify. 

Finally, the committee notes that the software industry is shifting from the development of software 
products to an increased focus on integration, custom development, and other services.30 More than half 
the revenues of software product companies are now coming from services rather than from product 
sales, but product sales tend to be the most scalable and profitable part of the business.31 Additionally, 
the software-product sector is consolidating and thus shrinking in numbers, decreasing from more than 
400 to less than 150 publicly listed software product companies on U.S. stock exchanges in the past 8 
years.32 Another consequence of the shifts toward services and consolidation may be a reduction in 

28  Indeed, fear of value diffusing to competitors that can assimilate it more efficiently into their practices can create a negative 
incentive to invest, although it can be dangerous to make this judgment when evidence is lacking, because innovation leadership 
may be less easy to recover once lost.

29  NRC, 2006, Measuring and Sustaining the New Economy, Software, Growth, and the Future of the U.S Economy: Report of a Sym-
posium, Washington, DC: National Academies Press. Available online at http://www.nap.edu/openbook.php?record_id=11587. 
Last accessed August 20, 2010.

30  For quite a few years, about two-thirds of global revenues in the software industry have actually been from services (such 
as custom software development, maintenance, IT consulting, and technical support), and only one-third of revenues have come 
from the product companies. See Michael A. Cusumano, 2004, The Business of Software, New York: Free Press, p. 46, footnote 19, 
citing Standard & Poor’s annual data. An issue in these analyses is how the word “services” is defined—it is used both for custom 
development/integration by teams of people and also for “software-as-a-service” (SAAS) and cloud-based delivery of software 
value. Additionally, the distinction between “product” and “service” in software is becoming increasingly muddy as licensed 
product software delivered to customers is complemented by off-site SAAS and cloud-based software generally. For many end 
users, for example, there may be relatively little distinction in the experience, say, of Microsoft Office tools on a desktop computer 
(a “product”) and Microsoft Office Live or Google documents tools on a browser (a “service”). A similar statement could be 
made at the enterprise level, for example, regarding customer relationship management (CRM) software. This shift is the result 
of evolving business models enabled by technology and infrastructure developments. 

31  Thus, only about one-sixth of global software industry revenues (half of the one-third of revenues from products) are from 
product sales. See Michael A. Cusumano, 2008, “The Changing Software Business; Moving from Products to Services,” IEEE 
Computer 40(1):20-27.

32  See p. 22 in Michael A. Cusumano, 2008, “The Changing Software Business; Moving from Products to Services,” IEEE Com-
puter 40(1):20-27. This may also reflect post-bubble consolidation in both technology- and media-focused companies.
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support for new software research. De facto consortia, often but not always manifest as open-source 
projects, are often the centers for industry-wide innovation.33

Changes in the DoD Innovation Environment

The question regarding the extent to which the DoD can meet its ongoing software needs through 
innovation-push from the commercial sector has to be answered in the context of three additional fac-
tors, which follow three significant shifts in the environment of technology innovation. 

The first is the growing globalization of the software industry, as noted earlier, with rapid gains in 
capability in India and China (and elsewhere in Asia) and Russia as well as steady gains in Europe.34,35 
This shift creates competitive pressures with respect to the rapidly increasing proportion of defense 
mission capability embodied in software. It also amplifies the challenge of mission assurance, given the 
increasing extent to which DoD software will likely be developed in foreign countries. This topic was 
taken up by the committee, and Chapter 4 addresses practice and technology issues related to software 
assurance, including both preventive measures in the engineering process and evaluative measures 
appropriate for development and for test and evaluation. Other dimensions of cybersecurity are conse-
quential but not within the scope of this report—these were discussed at length in the 2007 DSB Task 
Force report Mission Impact of Foreign Influence on DoD Software.36 

The second shift has been the reduction over the past decade of direct DoD investment in advancing 
software capability within the defense industrial base and its supply chain (see Box 1.5). Although this 
shift may be under reconsideration, it nonetheless raises a key question that was considered extensively 
by this committee, which is whether industry, without explicit R&D stimulus from the DoD, will produce 
innovations in areas of interest to the DoD of the kind and extent that are needed to meet the ongoing 
rapid growth in DoD software requirements.

The third shift is a consequence of the second, which is the reduction in PhD output due to the drop 
in R&D investment in software producibility. Historically, the DoD has had a significant leadership role 
in creating and sustaining the innovation advantage of the United States in IT and in fostering new 
generations of innovators and technical leaders in computer science and IT. This role has been evident 
from the earliest days of computing during World War II. That this DoD investment has been a sig-
nificant driver of U.S. capability and innovation in information technologies is documented in several 
national studies.37,38,39 This has had the salutary benefit of enabling the United States to develop and 
retain innovation and ecosystems leadership. In areas related to software producibility, including high-

33  Examples in the realm of open source include Apache, Linux, Eclipse, and other widely adopted open source. In addition, 
formal consortia are often created to address industry-wide issues, as in the case of W3C (HTTP, HTML, XML, CSS, and other 
web-related standards) and TCG (TPM, trusted storage, and other trust-related standards for hardware). Finally, expert groups are 
often convened by standards organizations to address common issues, as in the case of JPEG (ISO and ITU) and MPEG (ISO).

34  See Michael A. Cusumano, 2006, “Where Does Russia Fit into the Global Software Industry?” Communications of the ACM 
49(2):31-34. See also, Michael A. Cusumano, 2006, “Envisioning the Future of India’s Software Services Business,” Communications 
of the ACM 49(10):15-17. 

35  In China, there are private and state-connected companies under government sponsorship to develop ecosystems and infra-
structure software (China versions of CDMA/GSM, embedded operating systems, and search engines, for example) to reduce 
dependence on firms such as Qualcomm, Nokia, Microsoft, Google, etc.

36  DSB, September 2007, Report of the Defense Science Board Task Force on Mission Impact of Foreign Influence on DoD Software, Wash-
ington, DC: Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics. Available online at http://stinet.
dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA473661. Last accessed August 20, 2010.

37  NRC, 1997, Ada and Beyond: Software Policies for the Department of Defense, Washingon, DC: National Academies Press. Available 
online at http://www.nap.edu/catalog.php?record_id=5463. Last accessed August 20, 2010.

38  NRC, 2000, Making IT Better: Expanding Information Technology Research to Meet Society’s Needs, Washington, DC: National 
Academies Press. Available online at http://www.nap.edu/catalog.php?record_id=9829. Last accessed August 20, 2010.

39  NRC, 1997, The Evolution of Untethered Communications, Washington, DC: National Academies Press. Available online at 
http://www.nap.edu/catalog.php?record_id=5968. Last accessed August 20, 2010.
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confidence systems, data from the NITRD coordination reports show that the DoD has reduced its basic 
research investment (see Box 1.5). 

In addition to these shifts, there may also be cases where industry has little economic incentive 
to acknowledge fundamental gaps in knowledge. This is not so unusual. One obvious example is ill-
structured contracts, often from the government, that create perverse incentives—for example, where 
project difficulties (or inadequate tooling and practices) may accrue to a contractor’s economic benefit 
in the form of increased contract costs and profits, along with long-term revenue streams resulting from 
costly post-deployment repair and maintenance requirements. A second example is the consequence of 
poor measurement capability (as noted above), particularly relating to quality and security—“assurance 
metrics” in the terminology of the 2007 DSB Task Force report.40 When metrics and observables are 
lacking, it is difficult to construct a business case for improvement of the underlying phenomena of 
concern—quality and security in this case. A third example is inadequate best practices. When metrics 
are weak, we must rely disproportionately on folklore-derived best practices and processes and orga-
nizational maturity to achieve product-related goals. Process compliance is relatively easier to achieve 
and certify than quality, but in software it is not always strongly correlated. As noted, fundamental 
improvements in best practices to enhance what can be achieved in terms of systems capability, pro-
ductivity, quality, agility, and other characteristics sometimes fall into the category of non-appropriable 
innovations, discussed above, and thus may not readily be the subject of industry investment. These 
factors combine to lower industry economic incentives to address the producibility challenge.

Recommendation 1-1: The DoD, through its Director of Research & Engineering (DDR&E), should 
regularly undertake an identification of areas of technological need related to software producibil-
ity where the DoD has “leading demand” and where accelerated progress is needed to support the 
defense mission.

The Necessity of Innovation in Software

Is There a Need to Innovate?

That global suppliers are moving up the value chain41 suggests the possibility that U.S. leadership 
may be eclipsed in many of the core technologies related to systems architecture, languages and tools, 
and software assurance, as well as with respect to key design elements of software ecosystems and 
infrastructure. This suggests a key question, particularly as we contemplate the commitment of resources 
to new R&D activity: Is there, in fact, strategic value in retaining U.S. leadership in software produc-
ibility? The committee argues strongly in the affirmative, based on the unique role and technological 
characteristics of software. 

The DSB Task Force report on foreign software also asks this question, focused on the particular 
area of software assurance, and offers an affirmative response, noting the essential requirement that the 
United States maintain advanced capability for “test and evaluation” of IT products. In other words, 
reputation-based or trust-based credentialing of software (“provenance”) needs more and more to be 
augmented by direct, artifact-focused means to support acceptance evaluation. The DSB Task Force rec-
ommends more effective direct evaluation by consuming organizations throughout the software supply 
chain, including better ways for producers to create software for which direct evidence of critical quality 

40  DSB, September 2007, Report of the Defense Science Board Task Force on Mission Impact of Foreign Influence on DoD Software, Wash-
ington, DC: Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics. Available online at http://stinet.
dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA473661. Last accessed August 20, 2010. 

41  This is in the sense of moving from more routine activities that require minimal technological sophistication (such as first-
tier call centers, system-level “black-box” testing focused on the user experience, and similar activities) to more value-enhancing 
activities (such as custom software design and development). For software, this shift is enabled primarily through increased 
sophistication in technology and business practices.
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and functionality attributes can be provided. It concluded that test and evaluation should be supported 
by a broad range of software engineering technologies and interventions, not just those employed at the 
late test phase of development. (These issues are explored more extensively in Chapter 4.) 

Both the 2007 DSB Task Force report on foreign software42 and the DSB 2000 report on defense 
software43 also highlight the importance of commercial technology to the DoD, including the essential 
elements (operating systems, databases, application servers, and so on) of most of the predominant 
software ecosystems architectures. DoD’s historical investment in basic research has influenced these 
commercial technologies in ways that have facilitated DoD adoption (for example, early attention to 
scalability, process separation, interconnection, and survivability in operating systems and distributed 
systems infrastructure). Without continued research investment, that influence will diminish just when 
the off-the-shelf technologies are rising in importance to DoD systems. 

Additionally—and looking beyond software assurance into the other critical dimension of software 
producibility—without continued research investment, the DoD will lose effectiveness in its ability to 
undertake custom software engineering to rapidly achieve high levels of capability and to adapt with 
maximum agility to changes in the operating environment. A significant loss of U.S. leadership in either 
area could threaten the DoD’s ability to produce and assure the software it requires.

Historically, the DoD investment has been an enabler, both directly and indirectly, of U.S. technologi-
cal leadership in software innovation (Box 1.6). This has helped enable the United States to be a leader in 
the development of software ecosystems, which means that the DoD is able to rely on ecosystem archi-
tectures and components with greater confidence. It has afforded a high level of capability in software 
producibility for the necessary custom software that the DoD must develop or acquire.

Will Software Capability Reach a Plateau? 

Some have contended that software capability may be reaching a plateau, and as a consequence there 
is reduced need for leadership and innovation, because the technologies are inevitably commoditizing 
and the engineering focus is shifting to optimization and routinization. This suggestion is sometimes 
offered as an analogy with other technology disciplines, ranging from many specialized materials to 
display panels and memory chips. The committee views this contention as dangerously incorrect.

The reality is that software is not at a plateau, despite the fact that suggestions of the possibility are 
made on a regular basis. Consider, for example, the ambitious aspirations of those developing Fortran 
(Box 1.7). A similar story can be told about the “Fourth Generation” database languages introduced a 
few decades later and, more recently, about languages for business rules. These are all major innova-
tions with far-reaching impact, and in all cases they delivered considerable value. But they also inspired 
computer users to greater ambitions, and thus the limits of these innovations were reached. 

One of the most significant special characteristics of software, as noted at the outset of this report, 
is its unboundedness—the lack of natural physical limits on its scale and complexity. As the sophistica-
tion of languages, models, tools, and practices increases, the ambitions of computer users continue to be 
realized. These characteristics also mean that while these developments move us forward, they do not 
actually get us closer to “being there” at some plateau of capability and emerging commodity status. 
New software-manifest capabilities are constantly emerging—for example, machine-learning technol-
ogy is now used in applications ranging from data mining to robot design and quality-of-life enhance-
ment for seniors. The profound fact is that software seems to be limitless. For software, “continuous 
improvement” in capability (as distinct from process) is less a matter of fine-tuning than an innovation 

42  DSB, September 2007, Report of the Defense Science Board Task Force on Mission Impact of Foreign Influence on DoD Software, Wash-
ington, DC: Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics. Available online at http://stinet.
dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA473661. Last accessed August 20, 2010.

43  DSB, November 2000, Report of the Defense Science Board Task Force on Defense Software, Washington, DC: Office of the Under 
Secretary of Defense for Acquisition, Technology, and Logistics. Available online at http://oai.dtic.mil/oai/oai?verb=getRecord
&metadataPrefix=html&identifier=ADA385923. Last accessed August 20, 2010.
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process that regularly delivers order-of-magnitude jumps in capability. The improvements are not just 
outcomes from the Moore’s Law curves and other exponentials in the underlying physical infrastructure 
of processors, memory, and networks. Those improvements are significant enablers, but our ability to 
produce increasingly complex software artifacts has largely been enabled by a steady pace of technologi-
cal breakthroughs in software practices, technology, languages, models, and tooling. (The performance 
of software has been enabled by the development of new algorithms, by advances in hardware, and by 
simplification and rescoping of the computational problems being solved.)

Similar observations apply to software ecosystems. These are a critical and essential development 
to provide conventionalized access to infrastructure and capability on which systems are built. They 
are, in fact, the success of software reuse.44 As technical progress is made, these structures evolve, with 
increasing levels of infrastructure capability, for example in operating systems, databases, application 
servers, frameworks of various kinds, data center services, and so on. In a sense, this is analogous to a 

44  Butler W. Lampson, 1999, “Software Components: Only the Giants Survive,” 21st International Conference on Software 
Engineering (ICSE’99), Keynote Address. Available online at http://research.microsoft.com/en-us/um/people/blampson/70-
softwarecomponents/70-softwarecomponents.doc. Last accessed August 20, 2010. 

BOX 1.6 
Lessons About the Nature of Research in IT

The following material is reprinted from National Research Council, 2003, Innovation in Information 
Technology, National Academies Press, Washington, DC, pp. 2-4.

The Results of Research
—America’s international leadership in IT—leadership that is vital to the nation—springs from a deep tradition of 

research. . . .
—The unanticipated results of research are often as important as the anticipated results. . . .
—The interaction of research ideas multiplies their impact—for example, concurrent research programs targeted 

at integrated circuit design, computer graphics, networking, and workstation-based computing strongly reinforced and 
amplified one another. . . .

Research as a Partnership
—The success of the IT research enterprise reflects a complex partnership among government, industry, and 

universities. . . .
—The federal government has had and will continue to have an essential role in sponsoring fundamental research 

in IT—largely university-based—because it does what industry does not and cannot do. . . . Industrial and governmental 
investments in research reflect different motivations, resulting in differences in style, focus, and time horizon. . . .

—Companies have little incentive to invest significantly in activities whose benefits will spread quickly to their 
rivals. . . . Fundamental research often falls into this category. . . . the vast majority of corporate R&D addresses product 
and process development. . . .

—Government funding for research has leveraged the effective decision making of visionary program managers 
and program office directors from the research community, empowering them to take risks in designing programs and 
selecting grantees. . . . Government sponsorship of research especially in universities also helps to develop the IT talent 
used by industry, universities, and other parts of the economy. . . .

The Economic Payoff of Research
—Past returns on federal investments in IT research have been extraordinary for both U.S. society and the U.S. 

economy. . . . The transformative effects of IT grow as innovations build on one another and as user know-how com-
pounds. Priming that pump for tomorrow is today’s challenge.

—When companies create products using the ideas and workforce that result from federally sponsored research, 
they repay the nation in jobs, tax revenues, productivity increases, and world leadership. . . .
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BOX 1.7 
Fortran Was a Breakthough but Did Not Lead to a “Software Plateau”

It is instructive to consider the publication more than 50 years ago of the 1958 landmark paper by 
John Backus describing the first Fortran compiler.� The title made reference to “automatic program-
ming,” and indeed this phrase was widely used at the time, including in the titles of technical confer-
ences.� The point of this phrase, with respect to Backus’s great accomplishment, is that there was a 
much more direct correspondence between his high-level programming notation—the earliest Fortran 
code—and pure mathematical thinking than had been the case with the early machine-level code. 
One can construe that it was imagined that Fortran enabled mathematicians to express their thoughts 
directly to computers, seemingly without the intervention of programmers. This was an extraordinary 
and historical breakthrough. But we know that, in the end, those mathematicians of 50 years ago soon 
evolved into programmers as a consequence of their growing ambitions for computing applications. 
Just a decade after the Backus paper, Fortran was used to support list-processing applications, typeset-
ting applications, compilers for other languages, and other applications whose abstractions required 
some considerable programming sophistication (and representational gerrymandering) to be repre-
sented effectively as Fortran data structures—arrays and numeric values. (See further discussion in 
footnote 26 in Chapter 5.)

 1 John W. Backus, November 1958, “Automatic Programming: Properties and Performance of FORTRAN Sys-
tems I and II,” in Proceedings of the Symposium on the Mechanisation of Thought Processes, Teddington, Middlesex, 
England: The National Physical Laboratory. Available online at http://archive.computerhistory.org/resources/text/
Fortran/102663114.05.01.acc.pdf. Last accessed August 10, 2010.

2 An early example is the 1954 “Symposium on Automatic Programming for Digital Computers.” See John Backus, 
1978, “The History of Fortran I, II, and III,” History of Programming Languages, New York: ACM. 

process of commoditization, in that many of the key architectural interfaces effectively define market 
structures for competitive supply of capabilities. 

But, at the same time, providers and clients continue to innovate above and around the infrastruc-
ture, creating new kinds of capability and differentiation. Additionally, there is very often continued 
innovation within the infrastructure to add capability, create differentiation, or make other enhance-
ments. This is certainly evident in the case of relational databases, for which there is a conventionalized 
set of abstractions (the concepts associated with relational tables, indexes, etc.) and also some standards 
related to access to those abstractions (SQL and enhancements such as ODBC and JDBC to support 
queries across software interfaces). But it is also the case that the particular vendors may add special-
ized features to these standard interfaces to support new capabilities in response to the market. In other 
words, although there is a seemingly inevitable commoditization of software component capabilities, 
there is also a seemingly indefinite deferment of reaching the goal of fully predictable decision outcomes 
regarding innovative software-manifest capabilities in systems. This is a key point about the intrinsic 
lack of limits of software (except those we choose to impose, such as architecture—see Chapter 3), and 
indeed this is a principal characterizing feature of software as an engineering building material. 

Finding 1-5: It is dangerous to conclude that we are reaching a plateau in capability and technology 
for software producibility. To avoid loss of leadership, the DoD will need to become more fully 
engaged in the innovative processes related to software producibility.
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The Continued Maturing of the Software Discipline Creates New Challenges

A consequence of this phenomenon of continuous capability improvement is the challenge of inte-
grating innovative software development into mainstream systems engineering processes. Despite the 
pervasiveness of software and its pivotal role in systems and infrastructures, the engineering of software 
has not yet matured into a fully rigorous discipline. For innovative software projects, fully measurable 
and predictable process flows and outcomes—a hallmark of conventional process maturity—will neces-
sarily remain elusive.

This is partly due to the fact that each new technical advance in software not only creates opportu-
nities but also presents new difficulties of measurement and risk assessment. Engineering repeatability 
is achievable only for the more precedented systems. Additionally, a characteristic of many innovative 
projects is that the scope of the intended impact may be defined while specific details regarding func-
tional and quality attributes emerge only in the course of development. Fully elaborated requirements 
against which predictions can be made often do not (and in many cases should not) exist.45 In other words, 
“predictability” may have more to do with success in addressing a need and less to do with how that 
need is specifically addressed. 

Of course, this is true of nearly all other engineering disciplines. A key difference with software is 
that development of particular software functionalities, once routinized, is then quickly automated. The 
result is that expensive custom development gives way to much-lower-cost component procurement. In 
turn this often gives way to open-source availability of the same functionality. Moreover, unlike other 
areas of engineering, the intrinsic cost of replicating or deploying software artifacts is near zero. We 
can conclude that the effect is that a relatively much larger portion of the overall engineering effort in 
a software enterprise is devoted to creating specifically innovative functionalities. In other words, once 
development of specific software functionalities is routinized, the cost can vanish relatively quickly, 
which means more of the overall hands-on engineering activity is in the realm of the innovative and 
unprecedented.

Additionally, the risks and difficulties of software are growing in severity and diversity, and we 
continue to experience failures of all kinds—related to reliability, security, flexibility, and other attributes. 
Software-related problems are responsible for life-threatening failures in health devices, failures of space 
missions, failures in military systems, cascading failures in infrastructure for telecommunications and 
power utilities, and so on. 

This may create a perception that there is an unavoidable trade-off between precedent and proj-
ect risk, and that the only way to avoid major project completion risk is to compromise on ambitions 
regarding system capability. The committee’s analysis suggests that this is not necessarily the case, and 
in Chapter 2, the committee considers the means by which the engineering risks associated with innova-
tive projects can be mitigated incrementally, thus potentially reducing the cost and project completion 
risk without overly compromising functionality.

Conclusions Regarding Software Innovation

The committee draws several conclusions from these observations regarding software capability 
improvement. First, mere presence in the market as a software user requires keeping pace with ongoing 
software innovation and improvements to practices. This is true even for individual software compo-
nents—indeed, commercial software managers recognize that software starts to “die” (in the sense of 
becoming less valuable to users) the moment it stops evolving. It is also true for practices—continuous 
improvement in practices and processes is essential for survival. Desktop computers now are almost 

45  See, for example, the description of the double helix design methodology in BG Harry Greene, USA, Larry Stotts, Ryan 
Paterson, and Janet Greenberg, January 2010, “Command Post of the Future: Successful Transition of a Science and Technology 
Initiative to a Program of Record,” Defense AR Journal, Defense Acquisition University. Available online at http://www.dau.
mil/pubscats/PubsCats/AR%20Journal/arj53/Greene53.pdf. Last accessed August 20, 2010. 
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1 million times more powerful than those of 1980. The software capabilities have similar jumps, although 
these jumps are less apparent and not easy to measure.

Second, leadership in the market, as a producer or consumer, requires an active organizational role 
in defining the architecture of systems, and doing so as a first mover or fast follower. Software economics 
are focused on externalities—where the technical manifestation of the system structure is the software 
architecture and internal framework and component interfaces. This requires sustained technological 
leadership and clear thinking about the significance of architectural control. This is particularly signifi-
cant in the definition and leadership of the design of the major ecosystems. Some of these are wholly 
controlled by commercial vendors, but others involve complex community processes. 

Third, software technical challenges are broadening. These include, for example, software assurance, 
ultra-scale architecture, concurrency (multi-core and distributed), framework design, programming 
language improvements for assurance and scale, concepts for “big data” systems, and so on. These 
challenges are addressed in Chapters 2, 3, and 4 of this report. 

Fourth, risk management models need to be continually adjusted to accommodate the new reali-
ties of software and of IT-enabled business practices, as noted above. This is the subject primarily of 
Chapters 2 and 4.

Finally, the role of software leadership in the global economy is growing, and this is increasingly 
recognized, with the result that global competition is becoming more intense at every level of capabil-
ity. Overseas competition is greatly facilitated by the low barrier to entry—costly physical facilities are 
not needed in the software economy, but education and technical currency are fundamental and ongo-
ing challenges. This is significant for the DoD, which has counted on U.S. industry, including defense 
contractors and their supply-chain participants, to sustain technological leadership in software as a 
key driver of capability leadership in systems. Such leadership must be maintained through constant 
investment in innovation and in people. At the highest level of technical sophistication, this requires 
investment in university research to produce a sufficient pipeline of technical leaders.46

46  U.S. PhD students in computer science and IT-related areas are almost universally supported with tuition and stipends 
covered by sponsored research. Universities rarely have funds to provide direct fellowships to PhD students in these areas, and 
few students have the resources or capacity to self-fund or to take on (often additional) loans to cover their costs.
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2

Accept Uncertainty:  
Attack Risks and Exploit Opportunities

INNOVATION, Precedent, AND DYNAMISM

Experience shows that there is a correlation between the degree of software system precedent, 
routinization, and stability, on the one hand, and the ability to deliver results with predictable cost, 
schedule, and operational test and evaluation (OT&E) success, on the other. Many of the Department of 
Defenses’s (DoD’s) information technology (IT) systems are precedented, as are significant portions of 
mission systems. These include the office automation and back-office systems for business operations 
that are increasingly conventionalized in both commercial and national security contexts. There are 
precedents for such systems in numerous institutions and environments. Such conventions enable the 
DoD to build on wide internal experience, other government experience, and commercial experience, 
reducing the uncertainty associated with predicting the outcomes of particular design decisions. This 
happens when similar decision points have been experienced in other settings, experience was gained, 
and it has been possible to transfer that experience to new projects that are sufficiently similar. For 
precedented development efforts, managers can project plans further into the future of a development 
process with higher accuracy. They can focus more closely on optimizing cost, schedule, and other fac-
tors while managing the various tradeoffs involved. For these routine systems, the DoD benefits when 
it can adjust its practices to conform to government and industry conventions, because it is then able to 
build more directly on precedent and also exploit a broader array of more mature market offerings.

The largest producibility challenges for the DoD come from its need for unprecedented, innovative 
systems that can be rapidly adapted. The mission of the DoD requires it to constantly move forward in 
advancing the capability of its systems. The committee uses the term “unprecedented” to refer to systems 
concepts, designs, or capabilities that are not similar enough to the existing base of experience to benefit 
from fully following an established pattern. As a result, development efforts may involve greater risk 
(see next section). This report calls these innovative and agile projects software-intensive innovative devel-
opment and reengineering/evolution (SIDRE) efforts and focuses much of its attention on them. It must be 
recognized, however, that most unprecedented systems designs, including very-large-scale interlinked 
systems, generally incorporate significant portions that are themselves precedented and possibly also 
associated with established commercial or open-source ecosystems.
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Precedented Systems

Put simply, engineering practices and technology choices for precedented systems (such as stable 
back-office systems capabilities) are guided by convention (such as commercial best practices for such 
systems), while engineering practices and technology choices for unprecedented systems and compo-
nents are guided by processes for mitigating engineering risk. In fact, there is a constant pace of innova-
tion even for seemingly established functional capabilities, such as back-office systems, with some areas 
of innovation and other areas that are more guided by convention. 

Following precedent may require engaging in a process of adapting previously unique business 
practices to reflect more “standard” or “conventional” operations practices that are more readily sup-
ported within mainstream systems and ecosystems, particularly when there is correspondence with 
modern back-office systems in the commercial world. This adaptation of functional goals to achieve con-
sistency with normative practice is an explicit part of the commercial requirements engineering process. 
The DoD and other government agencies may struggle more because they may find it more difficult to 
compromise, and for many good reasons. But the extent to which the DoD can find commonalities (and 
avoid unnecessary differentiation) with other government agencies creates opportunities for major cost 
reduction, risk reduction, and process simplification. 

Unprecedented Systems

As noted in the previous chapter, the need to develop unprecedented systems is a consequence of 
the highly complex and rapidly evolving operational environment within which the DoD must oper-
ate and execute its mission. Complexity is increasing, as is the difficulty of the threats and challenges. 
Highly capable information technology is now ubiquitous worldwide, and adversaries have ready access 
to cutting-edge technology. Mission and deployment priorities are constantly shifting. The DoD must 
collaborate extensively with other agencies, nongovernmental organizations (NGOs), coalition part-
ners, and others in constantly changing configurations over which the DoD has no control. Operational 
decisions are derived from a broad diversity of inputs. Command-and-control models must adapt to 
rapidly evolving threats. Success in this environment depends on systems designed for flexibility, agility, 
and robustness, but it also requires flexibility, agility, and robustness in the process by which systems 
are developed and continue to evolve. There is much less opportunity to rely on precedent and much 
greater requirement to undertake a process of ongoing innovation. This process of innovation entails 
acceptance of certain categories of risks. (See Box 2.1 for details.) 

Commercial best practices have also evolved for developing unprecedented systems. Air traffic 
control, telecommunications switches, middleware (such as from IBM and Oracle), operating systems 
(such as from Apple and Microsoft), and large-scale web applications (such as from Google, Facebook, 
and Amazon) have been developed under commercial best practices with varying degrees of success. 
However, these large-scale, unprecedented systems emerged over a period of years from market oppor-
tunity without a specification-driven need, while others did not. Besides business savvy, the main criti-
cal success/failure factors in these situations have involved the ability to assess potentially disruptive 
technologies and competitor strengths, and the corporate agility to adapt to change.� 

This chapter addresses the processes and practices by which these risks can be understood and 
addressed in the engineering of systems. A principal conclusion is that a well-managed incremental 
(iterative) process, supported by appropriate evaluation and measurement approaches, can more reli-
ably lead to successful outcomes even when there are significant engineering risks. On the other hand, 
attempts to produce innovative or unprecedented systems using familiar linear (“waterfall”) processes 

�  Michael Cusumano and David B. Yoffie, 1998, Competing on Internet Time: Lessons from Netscape and Its Battle with Microsoft, New 
York: The Free Press. See also Clayton M. Christensen, 1997, The Innovator’s Dilemma: The Revolutionary Book That Will Change the 
Way You Do Business, New York: Harper Business. See also Robert L. Glass and P. Edward Presson, 2001, ComputingFailure.com: 
War Stories from the Electronic Revolution, Upper Saddle River, NJ: Prentice Hall PTR.
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can very often lead to unhappy surprises—late-breaking negative feedback regarding early design com-
mitments that, when learned at a late stage in the process, can be very costly to revise. That is, what 
appears to be a “safe,” conservative decision to follow the most basic process is in fact a dangerous 
decision that can drastically increase programmatic risk—and the possibility of total project failure.� 
The key features of a well-managed incremental process for innovative systems are (1) measurements 
that are informative and relevant, and (2) process feedback loops that are relatively short, with potential 
major reductions in programmatic risk. 

For many of the innovative systems at the heart of the DoD’s software producibility challenge, the 
details of the future requirements are not—and in many cases cannot be—fully understood. Thus the 
need to innovate is made more challenging by the simultaneous need to be agile as requirements neces-
sarily evolve over time. 

Managing Risk at Scale

There are attempts to manage innovative software development following process patterns more 
appropriate to precedented systems and to established predictable engineering disciplines. One con-
sequence is that linear development processes are inappropriately used despite the presence of high 
engineering risk (and requirements risk also), with the consequence that those engineering risks are 
unnecessarily transformed into increasing project risks. A second consequence is that there is unjusti-
fied emphasis on achieving excessive precision at the outset regarding functionality desired by the user, 
choices of infrastructure platforms, and possibly also economic tradeoffs in various complex dimensions 
of quality. This drive for excessive precision in these areas can yield a surfeit of specifications and other 
early design artifacts, which may in fact give only false comfort—and lead to downstream scrap and 
rework. 

This is because these process patterns do not account for the engineering risks and uncertainties 
inherent in developing innovative software, where there are no laws of physics and materials to constrain 
solutions to particular structural patterns. In precedented software, the structural patterns derive from 
established software ecosystems and from the body of precedent. In innovative SIDRE systems, these 
patterns are lacking, which is both advantageous, in that opportunity is afforded for innovation and 
creativity, and also disadvantageous, in that greater levels of uncertainty must be addressed. 

Modern governance approaches for larger systems must account for the management of uncer-
tainty. At scale, they must exploit collaboration among distributed teams and in rich supply chains for 
which there is a continuous negotiation of scope, quality, and resources to balance the opportunities in 
delivering more value with the uncertainties inherent in software development cost and scope targets. 
That is: 

It is important to treat scope, plans and resources as variables (not frozen baselines) and explicitly manage 
the variances in these variables until they converge on acceptable levels to commit a project/product to full scale 
production.

Fortunately, recent DoD and NRC studies� have resulted in some very initial steps, as evidenced in 

�  Some program managers sarcastically refer to an inappropriately used linear (waterfall) process model as the “requirements, 
delay, surprise” process model. Fred Brooks’s recent book, The Design of Design (Boston: Addison-Wesley, 2010), succinctly con-
cludes, “The Waterfall Model is wrong and harmful; we must outgrow it.” This point was also made in Fred P. Brooks, 1987, “No 
Silver Bullet—Essence and Accidents of Software Engineering,” Information Processing 20(4):10-19. 

�  Assessment Panel of the Defense Acquisition Performance Assessment Project, 2006, Defense Acquisition Performance Assess-
ment; see also NRC, Richard W. Pew and Anne S. Mavor, eds., 2007, Human-System Integration in the System Development Process: 
A New Look, Washington, DC: National Academies Press. Available online at http://www.nap.edu/catalog.php?record_id=11893. 
Last accessed August 20, 2010; and National Research Council (NRC), 2008, Pre-Milestone A and Early-Phase Systems Engineering: 
A Retrospective Review and Benefits for Future Air Force Acquisition, Washington, DC: National Academies Press. Available online at 
http://www.nap.edu/catalog.php?record_id=12065. Last accessed August 20, 2010. 
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BOX 2.1 
Programmatic, Engineering, and Systems Risk

Programmatic Risk

Programmatic or project risks pertain to the successful completion of engineering projects with respect 
to expectations and priorities for cost, schedule, capability, quality, and other attributes. A principal influ-
ence on programmatic risk is the process by which engineering risks are identified and addressed. This 
applies particularly to engineering risks related to architecture and ecosystems choices, quality attributes, 
and overall resourcing. With innovative projects, programmatic risk can be reduced through use of iteration, 
incremental engineering, and modeling and simulation (as used in many engineering disciplines). Program-
matic risks that derive from overly aggressive functional or quality requirements, where engineering risks 
are not readily mitigated, are often best addressed through moderation on the “value side,” for example, 
through scoping of functional requirements. Indeed, for ambitious and innovative programs—those char-
acterized as “high risk, high reward”—for identifying and sorting engineering risks, it is often most effective 
to focus as early as possible on architecture. Once overall scope of functionality is defined, architecture 
risks may often dominate the detailed development of functional requirements.

A well-known example of negative consequences of unmitigated programmatic risks is the FBI Vir-
tual Case File (VCF) project.� The project is documented in the IEEE Spectrum: “The VCF was supposed to 
automate the FBI’s paper-based work environment, allow agents and intelligence analysts to share vital 
investigative information, and replace the obsolete Automated Case Support (ACS) system. Instead, the FBI 
claims, the VCF’s contractor, Science Applications International Corp. (SAIC), in San Diego, delivered 700,000 
lines of code so bug-ridden and functionally off target that this past April [2005], the bureau had to scrap 
the US $170 million project, including $105 million worth of unusable code. However, various government 
and independent reports show that the FBI—lacking IT management and technical expertise—shares the 
blame for the project’s failure.”� 

Eight factors that contributed to the VCF's failure were noted in a 2005 Department of Justice audit. 
These included “poorly defined and slowly evolving design requirements; overly ambitious schedules; and 
the lack of a plan to guide hardware purchases, network deployments, and software development for the 
bureau. . . .” Finally, “Detailed interviews with people directly involved with the VCF paint a picture of an 
enterprise IT project that fell into the most basic traps of software development, from poor planning to bad 
communication.” (Today, 5 years later, the program has been scrapped yet again.)

Supply chain risk is an area of engineering risk that is growing in significance and that often develops 
into programmatic risk. This is evident in the DoD’s increasingly complex and dynamic supply-chain struc-
ture, with particular emphasis on concerns related to assurance, security, and evolution of components and 
systems infrastructure. This risk can be mitigated through techniques outlined in Chapters 3 and 4 related 
to architecture design, improved assurance and direct evaluation techniques, multi-sourcing, provenance 
assessment, and tracking and auditing of sourcing information. Supply chain risk is particularly challenging 
for infrastructure software and hardware, because of the astonishingly rapid evolution of computing tech-
nologies, with commercial replacement cycles typically every 3 to 5 years. In the absence of careful planning, 
this means that early ecosystem commitments can potentially create programmatic risks in downstream 

 1 Ben Bain, 2009, “FBI Pushes Back Completion Date for Sentinel File System ” November 10, 2009, Federal Computer 
Week. Available online at http://fcw.com/Articles/2009/11/10/FBI-Sentinel-IG-report.aspx. Last accessed August 20, 2010.

 2 Harry Goldstein, 2005, “Who Killed the Virtual Case File?” IEEE Spectrum 42(9):24-35. Available online at http://
spectrum.ieee.org/computing/software/who-killed-the-virtual-case-file. Last accessed August 20, 2010. See also James 
C. McGroddy and Herbert S. Lin , eds., 2004, A Review of the FBI’s Trilogy Information Technology Modernization Program, 
Washington, DC: National Academies Press. Available online at http://www.nap.edu/catalog.php?record_id=10991. Last 
accessed August 20, 2010. See also the subsequent NRC letter report, 2004, Letter Report to the FBI, James C. McGroddy 
and Herbert S. Lin, eds., Washington, DC: National Academies Press. Available online at http://www.nap.edu/catalog.
php?record_id=11027. Last accessed August 20, 2010. 

system-refresh cycles, when shifts in vendor strategy may create unanticipated incompatibilities. Indeed, 
vendors may often institute incompatible changes in interface specifications in their ecosystems in order to 
force user organizations to stay current with evolving technology. Thus, the advantage of “riding the curves” 
with off-the-shelf infrastructure must be weighed against the loss of control by program managers. But this 
is not a simple tradeoff, since savvy architects have ways to structure systems to increase the possibility of 
“having it both ways” in many cases.

Related to supply chain is another kind of programmatic risk, derived from conflicting business incen-
tives. This kind of risk is often present in projects focused on enhancing interoperation among systems. 
With interoperation, for example, data from sensors for one system can be used to enhance situation 
awareness models in another system. Indeed, one of the strong arguments for net-centric approaches is the 
benefit of broad sharing of sensor data to enhance situation awareness and better inform tactical decision 
making.� Despite the natural drivers for interlinking, there are risks and difficulties. A critical system risk, for 
example, relates to security—poor architectural decision making at the outset could mean that successful 
attacks could result in amplified consequences, due to the larger scale of the overall system. 

There are also programmatic risks relating to potential conflicts in the business and mission interests of 
the organizations responsible for the entities being interlinked. Vendors, for example, who are competing 
at the level of ecosystems may see interlinking as an opportunity for competitors to benefit from network 
effects associated with acceptance of the ecosystem by users—that is, interlinking with competitor systems 
may be perceived as a threat to investment in ongoing ecosystems enhancement. There are also circum-
stances under which DoD contractors may also see enhanced interoperation (and open architectures, more 
generally) as a threat to lock-in and an enhancement to opportunities of competitors.

Engineering Risk 

Engineering risks pertain to uncertainties and consequences of particular choices to be made within 
an engineering process. High engineering risk means that outcomes of immediate project commitments 
are difficult to predict and consequently raise programmatic risk. Engineering risks can relate to many 
different kinds of decisions—most significantly architecture, quality attributes, functional characteristics, 
infrastructure choices, and the like. Except in the most routinized cases, much of the practice and tech-
nology of software engineering is focused not only on system capability, team productivity, and resource 
requirements for development, but also on the reduction of the engineering risks that unavoidably arise 
in unprecedented developments. 

As DoD and commercial systems evolve with more and more functionality delivered in software, sys-
tems engineering and software engineering techniques are intersecting, leading to a critical area for new 
research and the advancement of practice. The challenge is three-fold. First, traditional decision support 
techniques need to be enhanced to address the diverse kinds of software engineering risks. Second, there 
is need for modeling, simulation, prototyping, and other “early validation” techniques for many different 
kinds of software engineering decisions, for example, those related to architecture, requirements, eco-
system choice, tooling and language choice, and many others. Third, system engineering models must be 
developed through which appropriate “credit” can be given in earned value models for activities that miti-
gate identified engineering risks. This entails addressing a range of challenges related to measurement and 
process design. Development of techniques to meet these challenges would benefit commercial industry 
as well as the DoD.

An example of the identification and resolution of engineering risk is described in a workshop report 

�  Metcalfe’s Law is an observation on network effects, stating that the “value” of a telecommunications network grows with 
the square of the number of nodes in the network—when the number of nodes in a complete graph doubles, the number 
of edges roughly quadruples. Of course, there are other ways scale influences “value” that may make actual value greater 
or less than quadratic. But regardless of the model, it is clear that the effects are super-linear. This observation explains the 
forces that drive the coalescing of separate networked systems into aggregates, including the internetworking initiatives of 
the 1970s that coalesced diverse computer networks into the Internet.
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BOX 2.1 
Programmatic, Engineering, and Systems Risk

Programmatic Risk

Programmatic or project risks pertain to the successful completion of engineering projects with respect 
to expectations and priorities for cost, schedule, capability, quality, and other attributes. A principal influ-
ence on programmatic risk is the process by which engineering risks are identified and addressed. This 
applies particularly to engineering risks related to architecture and ecosystems choices, quality attributes, 
and overall resourcing. With innovative projects, programmatic risk can be reduced through use of iteration, 
incremental engineering, and modeling and simulation (as used in many engineering disciplines). Program-
matic risks that derive from overly aggressive functional or quality requirements, where engineering risks 
are not readily mitigated, are often best addressed through moderation on the “value side,” for example, 
through scoping of functional requirements. Indeed, for ambitious and innovative programs—those char-
acterized as “high risk, high reward”—for identifying and sorting engineering risks, it is often most effective 
to focus as early as possible on architecture. Once overall scope of functionality is defined, architecture 
risks may often dominate the detailed development of functional requirements.

A well-known example of negative consequences of unmitigated programmatic risks is the FBI Vir-
tual Case File (VCF) project.� The project is documented in the IEEE Spectrum: “The VCF was supposed to 
automate the FBI’s paper-based work environment, allow agents and intelligence analysts to share vital 
investigative information, and replace the obsolete Automated Case Support (ACS) system. Instead, the FBI 
claims, the VCF’s contractor, Science Applications International Corp. (SAIC), in San Diego, delivered 700,000 
lines of code so bug-ridden and functionally off target that this past April [2005], the bureau had to scrap 
the US $170 million project, including $105 million worth of unusable code. However, various government 
and independent reports show that the FBI—lacking IT management and technical expertise—shares the 
blame for the project’s failure.”� 

Eight factors that contributed to the VCF's failure were noted in a 2005 Department of Justice audit. 
These included “poorly defined and slowly evolving design requirements; overly ambitious schedules; and 
the lack of a plan to guide hardware purchases, network deployments, and software development for the 
bureau. . . .” Finally, “Detailed interviews with people directly involved with the VCF paint a picture of an 
enterprise IT project that fell into the most basic traps of software development, from poor planning to bad 
communication.” (Today, 5 years later, the program has been scrapped yet again.)

Supply chain risk is an area of engineering risk that is growing in significance and that often develops 
into programmatic risk. This is evident in the DoD’s increasingly complex and dynamic supply-chain struc-
ture, with particular emphasis on concerns related to assurance, security, and evolution of components and 
systems infrastructure. This risk can be mitigated through techniques outlined in Chapters 3 and 4 related 
to architecture design, improved assurance and direct evaluation techniques, multi-sourcing, provenance 
assessment, and tracking and auditing of sourcing information. Supply chain risk is particularly challenging 
for infrastructure software and hardware, because of the astonishingly rapid evolution of computing tech-
nologies, with commercial replacement cycles typically every 3 to 5 years. In the absence of careful planning, 
this means that early ecosystem commitments can potentially create programmatic risks in downstream 

 1 Ben Bain, 2009, “FBI Pushes Back Completion Date for Sentinel File System ” November 10, 2009, Federal Computer 
Week. Available online at http://fcw.com/Articles/2009/11/10/FBI-Sentinel-IG-report.aspx. Last accessed August 20, 2010.

 2 Harry Goldstein, 2005, “Who Killed the Virtual Case File?” IEEE Spectrum 42(9):24-35. Available online at http://
spectrum.ieee.org/computing/software/who-killed-the-virtual-case-file. Last accessed August 20, 2010. See also James 
C. McGroddy and Herbert S. Lin , eds., 2004, A Review of the FBI’s Trilogy Information Technology Modernization Program, 
Washington, DC: National Academies Press. Available online at http://www.nap.edu/catalog.php?record_id=10991. Last 
accessed August 20, 2010. See also the subsequent NRC letter report, 2004, Letter Report to the FBI, James C. McGroddy 
and Herbert S. Lin, eds., Washington, DC: National Academies Press. Available online at http://www.nap.edu/catalog.
php?record_id=11027. Last accessed August 20, 2010. 

system-refresh cycles, when shifts in vendor strategy may create unanticipated incompatibilities. Indeed, 
vendors may often institute incompatible changes in interface specifications in their ecosystems in order to 
force user organizations to stay current with evolving technology. Thus, the advantage of “riding the curves” 
with off-the-shelf infrastructure must be weighed against the loss of control by program managers. But this 
is not a simple tradeoff, since savvy architects have ways to structure systems to increase the possibility of 
“having it both ways” in many cases.

Related to supply chain is another kind of programmatic risk, derived from conflicting business incen-
tives. This kind of risk is often present in projects focused on enhancing interoperation among systems. 
With interoperation, for example, data from sensors for one system can be used to enhance situation 
awareness models in another system. Indeed, one of the strong arguments for net-centric approaches is the 
benefit of broad sharing of sensor data to enhance situation awareness and better inform tactical decision 
making.� Despite the natural drivers for interlinking, there are risks and difficulties. A critical system risk, for 
example, relates to security—poor architectural decision making at the outset could mean that successful 
attacks could result in amplified consequences, due to the larger scale of the overall system. 

There are also programmatic risks relating to potential conflicts in the business and mission interests of 
the organizations responsible for the entities being interlinked. Vendors, for example, who are competing 
at the level of ecosystems may see interlinking as an opportunity for competitors to benefit from network 
effects associated with acceptance of the ecosystem by users—that is, interlinking with competitor systems 
may be perceived as a threat to investment in ongoing ecosystems enhancement. There are also circum-
stances under which DoD contractors may also see enhanced interoperation (and open architectures, more 
generally) as a threat to lock-in and an enhancement to opportunities of competitors.

Engineering Risk 

Engineering risks pertain to uncertainties and consequences of particular choices to be made within 
an engineering process. High engineering risk means that outcomes of immediate project commitments 
are difficult to predict and consequently raise programmatic risk. Engineering risks can relate to many 
different kinds of decisions—most significantly architecture, quality attributes, functional characteristics, 
infrastructure choices, and the like. Except in the most routinized cases, much of the practice and tech-
nology of software engineering is focused not only on system capability, team productivity, and resource 
requirements for development, but also on the reduction of the engineering risks that unavoidably arise 
in unprecedented developments. 

As DoD and commercial systems evolve with more and more functionality delivered in software, sys-
tems engineering and software engineering techniques are intersecting, leading to a critical area for new 
research and the advancement of practice. The challenge is three-fold. First, traditional decision support 
techniques need to be enhanced to address the diverse kinds of software engineering risks. Second, there 
is need for modeling, simulation, prototyping, and other “early validation” techniques for many different 
kinds of software engineering decisions, for example, those related to architecture, requirements, eco-
system choice, tooling and language choice, and many others. Third, system engineering models must be 
developed through which appropriate “credit” can be given in earned value models for activities that miti-
gate identified engineering risks. This entails addressing a range of challenges related to measurement and 
process design. Development of techniques to meet these challenges would benefit commercial industry 
as well as the DoD.

An example of the identification and resolution of engineering risk is described in a workshop report 

�  Metcalfe’s Law is an observation on network effects, stating that the “value” of a telecommunications network grows with 
the square of the number of nodes in the network—when the number of nodes in a complete graph doubles, the number 
of edges roughly quadruples. Of course, there are other ways scale influences “value” that may make actual value greater 
or less than quadratic. But regardless of the model, it is clear that the effects are super-linear. This observation explains the 
forces that drive the coalescing of separate networked systems into aggregates, including the internetworking initiatives of 
the 1970s that coalesced diverse computer networks into the Internet.
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BOX 2.1  Continued

produced by this study committee.� This case study concerns the internal ecosystem at Amazon.com. 
Amazon evolved from a relatively straightforward e-commerce model into a highly complex aggrega-
tion of sellers and buyers, with a business model that depended in part on realizing the synergies of 
this aggregation and the growth in scale. “Amazon builds almost all of its own software because the 
commercial and open source infrastructure available now does not suit Amazon.com’s needs.” When 
it became clear that initial architectural approaches needed to be enhanced, a critical decision point 
was reached, with developers at Amazon facing a choice between a “goal of building the ‘perfect’ sys-
tem (the ‘right’ system) whatever the cost” and a very different and “more modest goal of building a 
smaller, less ambitious system that works well and can evolve.” Developers recognized that trying to 
build the best possible system was a long, difficult, and potentially error-prone process. It also forced 
anticipation of a comprehensive set of potential downstream business models. The developers instead 
adopted an approach designed to support evolution and rapid organic growth. It necessarily embodied 
fewer assumptions regarding the business model, but it was designed to be adaptive and robust. This 
led to greater emphasis on infrastructure performance, scalability, and reliability, with a focus on imple-
mentation ideas such as redundancy, feedback, modularity, and loose coupling, under rubrics such as 
“purging,” “spatial compartmentalization,” and “apoptosis.” This was the model that led to Amazon’s 
rapidly growing venture into cloud computing and associated services.

Systems Risk 

Systems risks pertain to the potential hazards—operational risks, mission risks, deployment chal-
lenges, and so on—associated with the deployment of a system. What are the kinds of failures, and 
what kinds of hazards do they create? For example, cascading failures have been experienced in tele-
communications and power utilities. These are large-scale system failures resulting from unwanted 
positive feedback of local failures triggering failures elsewhere, leading to more global failures with 
the corresponding hazards. That is, the hazard of a single system failing can often be associated with 
a much larger aggregate of systems, often spread across a wide geography. The consequences of a 
single local failure thus extend well beyond the immediate locality of the failure. The hazard is at a 
much greater scale.

A case study in systems risk is the Toyota Prius, a “highly computerized car,”� that relies on software 
programs to manage the various applications and features of the vehicle. This complex system is really 
an amalgam of simpler subsystems interoperating with each other across a network fabric. Drivers of 
the 2010 Prius had reported brake malfunctions, which would later be attributed to a glitch in the soft-
ware controlling the car’s brakes. It is unclear from reports from Toyota and in the press whether the 
“software glitch” was an algorithmic fault faithfully encoded into the software or a fault in the software 
encoding or the software infrastructure. Regardless, the repair of the fault was accomplished through 
software updates: Toyota later issued a software patch for the brake problem.� In February 2010, Ford 
also resolved a braking issue through a software upgrade.�

4 NRC, 2006, Summary of a Workshop on Software Intensive Systems and Uncertainty at Scale, Washington, DC: 
National Academies Press. Available online at http://www.nap.edu/catalog.php?record_id=11936. Last accessed Au-
gust 20, 2010.

 5 Stephen Manning and Tom Krisher, 2010, “More Trouble for Toyota as Regulators Launch Investigation of Prius 
Brake Problems,” Associated Press, February 4, 2010. Available online at http://autos.ca.msn.com/news/canadian-press-
automotive-news/article.aspx?cp-documentid=23387474. Last accessed August 20, 2010.

 6 David Millward, 2010, “Toyota Offers UK Prius Owners Brake Software Upgrade,” Telegraph.co.uk, February 8, 
2010. Available online at http://www.telegraph.co.uk/motoring/news/7189917/Toyota-offers-UK-Prius-owners-brake-
software-upgrade.html. Last accessed August 20, 2010.

 7 David Bailey, 2010, “Ford offers fix for Fusion hybrid brake glitch,” Reuters.com, February 4, 2010. Available 
online at http://www.reuters.com/article/idUSTRE61369I20100205. Last accessed August 20, 2010.
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the DoD’s revision of DoD Instruction 5000.02 and the recent Congressional Weapon System Acquisition 
Reform Act that establish such convergence as DoD acquisition policy.� However, the policy does not 
provide detail about how such convergence can be achieved, particularly in the software arena.

Finding 2-1: Modern practice for innovative software systems at all levels of scale is geared toward 
incremental identification and mitigation of engineering uncertainties, including requirements 
uncertainties. For defense software, the challenge is doing so at a larger scale, and in ways that are 
closely linked with an overall systems engineering process. 

Innovation and agility are related. Innovation is the ability to create new systems concepts to address 
emerging challenges and opportunities. Innovation can be in concept, functionality, architecture and 
design, performance, and so on. Innovative functionalities have migrated into software realizations 
because of the special characteristics of software. By improving our capability to manage uncertainty, we 
are able to accelerate the delivery of more capable systems and reduce costs. The environments of defense 
mission needs and of computing technology are both rapidly changing and often in unpredictable ways. 
This creates uncertainty, particularly when systems must be designed to anticipate these changes in 
mission and technology over periods of many years. Not all changes can be anticipated, which implies 
that not only must architecture and design be forward-looking, but also that ongoing process must be 
agile in facilitating ongoing innovation in response to changing needs and opportunities. What does it 
mean to “manage uncertainty,” and what are good characterizations and, where possible, measurements 
of the various dimensions of uncertainty? 

It is often stated as a matter of principle that we must measure something if we are to manage it. 
However, in the history of software engineering, the principal “measurables” have been time, effort, 
lines of code produced, and defects found and fixed. These are only approximate surrogates for the 
attributes of progress that matter in complex development projects, such as identification and resolu-
tion of engineering risks, assurance with respect to quality attributes, manifestation of critical functional 
features, ability to support future evolution, and so on. The former set of measurables (e.g., time, effort, 
etc.) are perhaps more useful for linear or waterfall developments, but they are of diminishing value 
for innovative and agile projects. In these projects, not only must engineering risks be identified and 
resolved, but also observable attributes must be created to provide evidence—and reduce the possibility 
of “going into denial” regarding challenging engineering risks. This issue is elaborated in the section 
below on earned value concepts.

From the perspective of quantitative measurement, the uncertainty of software producibility can be 
understood through the following observations:

1.	 Best practices for software development resource estimates employ empirical, parametric models. 
These models typically have 20 to 30 input parameters and produce a probability distribution of 
outcomes. 

2.	 The variance of the distribution of outcomes is a good measure of the uncertainty. 
3.	 Managing this uncertainty means reducing the variance in the distribution of outcomes as esti-

mates to complete are recalculated on a periodic basis.

Process agility is needed to respond rapidly and effectively to changing circumstances. But often 
those changing circumstances are in the form of late-breaking (in a development process) understand-
ing of key design commitments and emerging engineering risks. Thus effectiveness at the management 

�  The 2010 National Defense Authorization Act (NDAA) language (Section 804) is also evidence of progress. National Defense 
Authorization Act (NDAA) of Fiscal Year 2010, Pub. L. no. 111-84, 111 Congress, (2009). Available online at http://www.wifcon.
com/dodauth10/dod10_804.htm. Last accessed August 20, 2010. 
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of uncertainty is one key to process agility in systems definition and conceptualization, as well as 
realization.

Technology cannot overcome poor governance or management. However, in the past two decades, 
considerable progress has been made in assessing organizational capability to enact process models 
to manage complex software developments. This understanding has been packaged in a variety of 
ways, such as the capability maturity model, ISO 9000, and the spiral development model. Even well-
managed software development can be hamstrung by poor selection of technology, but it can also be 
enhanced significantly by the judicious use of technology. Software-intensive systems are complex. Tools 
are needed to help manage complexity, track changes, maintain configuration control, and enforce the 
integrity of the architecture—these help teams avoid mistakes often driven by that complexity. Indeed, 
modern software teams at all levels of scale rely much more intensively on tooling for process support 
than at any point in the past. 

Software is distinctive in that it permits rapid iterations, aggressive prototyping, simulation, and 
modeling, along with other techniques that can afford early validation with respect to many critical 
acceptance criteria. Improved software infrastructure and practices also enable agility, as do improved 
means to measure and assess software quality and other attributes. The governance and management 
process for unprecedented systems can better exploit these unique software capabilities. This means, in 
particular, the aggressive use of iterative risk-managed processes and the definition of suitable earned 
value measures related to validation of requirements and architecture, team collaboration, and continu-
ous integration. It also means that platform automation support for measurement, resource estimation, 
variance reduction, and change propagation must mature. Another recent study from the National 
Research Council has assessed the potential, primarily from a management perspective, for the DoD 
to more widely employ incremental and iterative processes to support risk-managed development of 
SIDRE systems.� The recommendations of this study are generally in harmony with the recommenda-
tions of this report, which focuses more on technological enablers and on attendant research and tech-
nology-development challenges.

Earned Value Management and Unprecedented Systems

Earned value management (EVM) is “a means of determining the financial health of a project by 
measuring whether the work completed to date is in line with the budget and schedule planning.” One 
of the goals of using EVM is to get early warning of potential problems. EVM tracks planning, progress, 
cost, earned value (the planned cost of actual progress), and variance in cost and schedule. 

Although the technique is seemingly straightforward, the application of EVM for innovative and 
unprecedented software-intensive systems poses challenges. In particular, assessing and measuring 
actual progress is difficult. Conventional EVM systems make several assumptions, namely: (1) The rela-
tionship between resources and progress is linear, (2) The effort needed to meet certain goals is predict-
able at the outset, (3) Progress is easily and accurately measurable, and (4) The expected outcome—as 
articulated in requirements—is well understood. None of these assumptions applies in the case of 
software-intensive unprecedented system development efforts where the level of uncertainty changes 
the governance process from planning and tracking a straightforward production sequence of related 
tasks to an emerging discovery process that requires continuous steering.

Extending EVM to SIDRE software requires some significant changes in how EVM assessment 
and measurement strategies are applied. In particular, EVM in this context needs to be adapted from 
tracking conformance to planned expenditures to steering toward planned value creation. For this to 
happen, significant improvements are needed in our ability to value software assets. For example, a 
major, unfinished software asset is no more than an option to guide further investments that, with some 

�  NRC, 2010, Achieving Effective Acquisition of Information Technology in the Department of Defense, Washington, D.C: National 
Academies Press. http://www.nap.edu/catalog.php?record_id=12823. Last accessed August 20, 2010. 



Copyright © National Academy of Sciences. All rights reserved.

Critical Code:  Software Producibility for Defense
http://www.nap.edu/catalog/12979.html

ACCEPT UNCERTAINTY: ATTACK RISKS AND EXPLOIT OPPORTUNITIES	 53

remaining risk, will lead to a finished product that creates realized value for an organization. In other 
words, software systems present very weak observables.� 

But, such a product contains additional value in the form of flexibility to be better adapted, through 
additional investments, to its evolving operating conditions. Placing value on adaptation flexibility is 
essential for reasoning about investments in modular design architectures, such as those produced by 
the application of product-line approaches. Unfortunately, except at the level of overall ecosystems and 
vendor components, the value of most software design assets may be apparent only within a project and 
may change according to architectural choices. Thus, valuation of these assets is difficult and risky. We 
have neither the models we need to perform such valuation, nor adequate approaches to develop and 
validate estimates needed as inputs to such models (e.g., of uncertainties about future conditions). 

There is perhaps the potential to calibrate models over time based on past experience, though cali-
brations are always vulnerable to invalidation as operating conditions change. Nevertheless, some kind 
of approach to valuation (not only accounting for costs but also for value created, even if in the form 
of options) is important to managing iterative or other development processes to optimize for value 
created, rather than merely for conformance to predicted cost flow streams. 

Time-Certain Development and Feature Prioritization

The fact that (particularly SIDRE) software development effort and duration cannot be estimated 
precisely means that it is unwise to try to lock a software project into simultaneously fixed budget, 
schedule, and feature content (as has been found in many fixed-price, fixed-requirements software devel-
opment contracts). The concept of time-certain development recommended in the Defense Acquisition 
Performance Assessment (DAPA) report and elsewhere� avoids this problem by fixing duration as the 
independent variable and feature content a dependent variable. This is basically the same concept as 
the agile practice of timeboxing, but it needs more success conditions for large, mission-critical projects 
for which, as time is running out, it is difficult (and time-consuming) to determine which features to 
drop, and how to drop them without adverse side effects.

The critical success conditions for large-project time-certain development are to prioritize the fea-
tures in advance and to modularize the architecture to make it relatively easy to add or drop border-
line-priority features. In evolutionary development, this does not mean that the features will never be 
available, but that they will be deferred to a later increment. Prioritizing features in multi-stakeholder 
situations is never easy, but it becomes easier if the decision is just to determine what features are most 
needed in the next increment.

A most significant side effect of feature prioritization is that it produces a consensus ranking of the 
relative value of the system’s features. This provides the beginning of a way to reason about project risk, 
as the key quantity in risk management is an item’s risk exposure, defined as the product of the probabil-
ity of loss times the size of the loss, which is known at least relatively from the feature prioritization.

�  This is in the sense of the traditional OODA (observe, orient, decide, act) loop, which underlies iterative processes and in-
cremental development. That is, as iterations and increments of effort yield results, future iterations and increments necessarily 
build on those results. The challenges of software measurement and evaluation (as addressed throughout this report) relate to 
the “observe” part of the loop, the process-related challenges relate to the “orient” and “decide” parts of the loop, and many of 
the architecture/design and programming challenges relate to the “act” part of the loop.

�  This includes, most significantly, the NRC report on Achieving Effective Acquisition of Information Technology in the Department of 
Defense. NRC, 2010, Achieving Effective Acquisition of Information Technology in the Department of Defense, Washington, D.C: National 
Academies Press. Available online at http://www.nap.edu/catalog.php?record_id=12823. Last accessed August 10, 2010. Last 
accessed August 20, 2010.
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Evidence-Based Software Engineering and Risk Probability

Another major trend in software engineering and project management is to shift from schedule-
based milestones (“The contract says that the Preliminary Design Review (PDR) will be held on April 
1, so that’s when we’ll hold the PDR, whether we have a design or not.”) to event-based milestones 
(“We’ll finish all the design features by June 1, so we’ll hold the PDR then.”). However, such reviews 
often fail because there is no way to tell from all the Unified Modeling Language (UML) diagrams and 
PowerPoint charts whether the design will scale-up, handle crisis conditions, meet critical timelines, or 
be buildable within the available budget and schedule.

This has led to the current trend toward evidence-based milestones, and evidence-based software 
and systems engineering in general. This approach places responsibility on developers not only to create 
artifacts for review such as operational concepts, requirements, designs, plans, budgets, and schedules, 
but also to produce evidence that if a software system were built to the design, it would satisfy the 
requirements, support the operational concept, and be buildable within the budgets and schedules in 
the plan. This evidence would then be reviewed by independent experts, and shortfalls in evidence 
would be treated as uncertainties or probabilities of loss. As with the relative sizes of loss determined 
from requirements prioritization above, these probabilities are generally known only relatively, but they 
can be combined with the relative sizes of loss to produce at least relative risk exposure quantities for 
use in risk management.

Actually, evidence-based software and systems engineering has been practiced many times and 
has been a consistently performed and high-payoff corporate practice at leading companies such as 
AT&T since the 1980s.� However, such evidence is usually asked for in contract data item descriptions 
(DIDs) in optional appendices, where it is one of the first things to go when resources become strained. 
Making appropriate evidence a first-class deliverable not only would ensure its development, but also 
would make it an element of earned value management, in that it thus would have to be planned for 
and its progress tracked with respect to the plans. The evidence should be parsimonious and focus on 
enabling of action—rather than on the massing of “read-never” program documentation. These points 
are summarized in the following findings and recommendations.

Finding 2-2: The prescription in DoD Instruction 5000.02 for the use of evolutionary develop-
ment needs to be supplemented by the development of related guidance on the use of such prac-
tices as time-certain development, requirements prioritization, evidence-based milestones, and risk 
management.

Finding 2-3: Extensions to earned value management models to include evidence of feasibility and 
to accommodate practices such as time-certain development are necessary conditions to enable suc-
cessful application of incremental development practices for innovative systems.

As noted throughout this report, the DoD would benefit from investing effort in developing 
improved quantitative measures related to diverse software attributes such as quality, productivity, 
architecture compliance, architecture modularity, process performance, and many others. But DoD 
practices must also recognize that existing metrics do not fully reveal critical attributes of systems and 
process status and that expert judgment also has a critical role, particularly with respect to architecture, 
design, and many quality attributes associated with SIDRE systems. Evidence-based software and sys-
tems engineering approaches are being increasingly applied to address achievement of critical SIDRE 
attributes and need to be better institutionalized into DoD acquisition practice.

�  Joseph F. Maranzano, Sandra A. Rozsypal, Gus H. Zimmerman, Guy W. Warnken, Patricia E. Wirth, and David M. Weiss, 2005, 
“Architecture Reviews: Practice and Experience,” IEEE Software 22(2):34-43.
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Finding 2-4: Research related to process, measurement, architecture, and assurance can contribute to 
the improvement of measurement practice in support of both routine management of engineering 
risks and value assessment as part of earned value management.

For example, keys to developing cost-effective evidence involve determination of feature and attri-
bute priorities, assessment of candidate evidence-generation capabilities (modeling, simulation, proto-
typing, bench marking, exercises, early working versions, citations of relevant previous experience), and 
measurement of progress toward thorough evidence generation.� Some initial steps in this direction are 
provided in a report by Boehm and Lane.10

Recommendation 2-1: The DoD should take aggressive actions to identify and remove barriers to 
the broader adoption of incremental development methods, including iterative approaches, staged 
acquisition, evidence-based systems and software engineering, and related methods that involve 
explicit acknowledgment and mitigation of engineering risk.

There are different kinds of barriers that can be addressed through combinations of established 
best practice and emergent improved practice derived from technology and other improvements. These 
potentially surmountable barriers include (1) improved measurement and associated technology, (2) 
architecture validation using models, simulation, prototyping, etc., (3) program manager training and 
evaluation of perceived career risks (see findings below), (4) accretion of an accessible experience base 
and other shared resources that can facilitate sound decision making, and (5) acceptable shifts of early-
stage emphasis for innovative systems from detailed functional requirements to concurrent engineering 
of requirements, architecture, process definition, and evidence of their compatibility and feasibility. 
Similar barriers exist in commercial industry, of course. These are accentuated in DoD because of its 
particular challenges of arm’s-length contractual relationships, high assurance requirements, potential 
presence of adversaries in the systems development activity, and other barriers. 

Managing Requirements AND architecture 

Software development complexities tend to increase non-linearly as systems scale up in complex-
ity, features, and quality goals. The challenge for the DoD is that its requirements must be addressed 
at unusual scale, complexity, interconnection, security, and with life-critical mission requirements. This 
challenge is exacerbated by the fact that the DoD is not sufficiently exploiting known techniques for the 
management of complex and evolving requirements. These techniques have been a focus of research 
for many years, but the known techniques are not widely employed on DoD applications—techniques 
including spiral development, joint application development, agile development, etc. The resulting 
difficulties are well known.11,12

There is widespread agreement that the requirements-delay-surprise (linear) approach to software 
development is not effective for innovative systems. The committee proposes more extensive use of 
an incremental, risk-assessment-driven approach. It is important to appreciate that, for incremental 
approaches to succeed, there needs to be forward-looking up-front investment in the overall system and 
process design. This enables problems to be decomposed in such a way that engineering risks can be 
identified, initial architecture models developed, and overall programmatic risk is minimized. If this is 

�  This concept of evidence generation is different but analogous to the discussion of evidence-based assurance in Chapter 4.
10  Barry Boehm and Jo Ann Lane, 2010, Evidence-Based Software Processes, Proceedings, 2010 International Software Process Confer-

ence Springer, Berlin.
11  NRC, 2010, Achieving Effective Acquisition of Information Technology in the Department of Defense, Washington, DC: National 

Academies Press, Washington, DC. Available online at http://www.nap.edu/catalog.php?record_id=12823. Last accessed August 
20, 2010.

12  Barry Boehm and Richard Turner, 2003, Balancing Agility and Discipline: A Guide for the Perplexed, Boston: Addison-Wesley. 
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done well, then the subsystems can be developed relatively independently.13 As more information about 
the constraints and limitations on the subsystems becomes clearer, this high-level system architecture—
the minimum set of critical common commitments—needs to be repeatedly revisited, reevaluated from 
a technical perspective, and evolved to assure that it remains appropriate. This reevaluation should be 
supported by a range of modeling and analysis capabilities to help detect problems and vulnerabilities 
at the earliest possible stages.14 Similar evaluation should be applied to the overall system architecture, 
as well as to each of the subsystems.

Changeability and Correspondence

Requirements need to be seen as an evolving set of goals and constraints. Initially, the requirements 
capture the scope of the mission and associated operating environment and goals of the system. As 
design decisions are made, scope is refined and these high-level goals need to be mapped down to the 
lower-level details.15 Design-specific constraints need to be included, and newly realized goals need to 
be added. Requirements are not useful, however, unless they are utilized throughout the development, 
maintenance, and evolution process. Requirements developed early in the project need not only to con-
tinue to be used to drive design decisions, but also to drive the architecture-level validation, low-level 
design validation, and implementation validation and testing. Recent work on model checking, program 
analysis, formal verification, and testing (and their interaction) demonstrate how an evolving require-
ments base can impact upstream and downstream activities. Requirements and associated systems must 
also adhere to the principle of correspondence, which states that minor changes in requirements should 
generally mean only minor system changes. Thus defining “minor” with regard to requirements is criti-
cal, and aligning architecture with overall functional and quality attribute requirements is essential. It 
should be noted, however, that the best architecture is often a discontinuous function of the performance 
requirements: a common example is the different scalability of different COTS products. Other key needs 
are for evolution requirements that specify the expected growth in workload that the architecture must 
support for developer evidence that the architecture will support not only the early increments, but also 
the full operational capability. 

The value of this approach is reinforced when experience is considered in “adjustment” or “renego-
tiation” of requirements. This experience suggests that, despite the intent of non-negotiability as implied 
by the use of the word “requirements,” we nonetheless see requirements being changed, bartered, and 
negotiated on almost every successful project. Changing a requirement receives tremendous scrutiny 
because it usually has an impact on the contract among stakeholders. 

Scope

Scope, as distinct from hard requirements, is intended to simply represent the current state of our 
understanding of the overall operational context and the needs that are addressed. In the committee’s 
experience, successful software projects are managed in a way that, implicitly, treats scope as a variable, 

13  This was a goal of the Amazon.com architecture reengineering project, as documented in NRC, 2007, Summary of a Workshop 
on Software-Intensive Systems and Uncertainty at Scale, Washington, DC: National Academies Press. Available online at http://www.
nap.edu/catalog.php?record_id=11936. Last accessed August 10, 2010.

14  Multiple studies have explored the relative cost of finding and repairing defects as a function of stage of the process. The cost 
differential between early and late stage can be two to three orders of magnitude. See e.g. See, RTI, 2002, The Economic Impacts of 
Inadequate Infrastructure for Software Testing, Planning Report 02-3, RTI Project Number 7007.011. Available online at http://www.
nist.gov/director/planning/upload/report02-3.pdf. Last accessed August 20, 2010.

15  In some innovative programs, there is a simultaneous refinement of system operational concept and technology design. An 
example of this is the “double helix model” adopted in the Command Post of the Future program, detailed in BG Harry Greene, 
USA, Larry Stotts, Ryan Paterson, and Janet Greenberg, January 2010, “Command Post of the Future: Successful Transition of a 
Science and Technology Initiative to a Program of Record,” Defense AR Journal, Defense Acquisition University. Available online 
at http://www.dau.mil/pubscats/PubsCats/AR%20Journal/arj53/Greene53.pdf. Last accessed August 20, 2010.
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just as cost and resources, schedule and work breakdown, quality (with respect to various attributes), and 
other overall constraints are variables subject to ongoing negotiation. An example is the prioritization of 
requirements and use of scope as a dependent variable in time-certain development. Even when scope 
is treated as a seriously scrutinized and controlled variable in DoD projects, a collaborative, open, and 
honest management style between customer and contractor, supported by constant effort to improve 
measurement and observation capability, has proven to be another necessary ingredient for success.

These are the foundations of modern agile governance that demand executable capability demon-
strations over time. Modern agile governance of software delivery means managing uncertainty through 
steering. In a healthy software project, each successive phase of development produces an increased 
level of understanding in the evolving plans, specifications, and completed solution, because each phase 
furthers a sequence of executable capabilities and the team’s knowledge of competing objectives. At any 
point in the life cycle, the precision of the subordinate artifacts should be in balance with the evolving 
precision in understanding, at compatible levels of detail and reasonably traceable to each other.

Estimations, Contracting, and Iterative Development 

The DoD operates within a complicated federal procurement and acquisition process. From the 
outset the government typically awards to the contractor with a viable technical solution and the lowest 
cost. For software-intensive systems there is a conventional wisdom that aggressive bids have driven 
many programs to diminished probabilities of success.16 Although the reasons for cost overruns and 
delays are complex, the choice of evaluation criteria in this process is undoubtedly a factor. The govern-
ment and contractors need to establish rigorous processes to ensure that we have a basis for size estimates 
that have sound derivation from comparable systems, as well as thoughtful scaling factors to account 
for degree of engineering risk, overall complexity and scale, and maturity of the various contributing 
technologies and ecosystems. For innovative SIDRE systems, the variances in a sound estimate can rise 
quite dramatically. For all systems, there is also the complication of the rapid evolution of the underlying 
software technologies, which tends to reduce commensurability with historical comparables. The use of 
evidence-based proposals and independent expert review is also helpful at the source selection stage.

Estimates

An additional difficulty is the lack of a rational standard by which the cost estimates are judged. 
While there are well-used metrics for hardware, a uniform set of standards for software development 
is lacking, although there are candidate models such as SEER-SEM, True S, or COCOMO. Also, analyz-
ing comparable probabilities of success should be a key element for awards. This analysis must avoid 
conflating engineering risk with programmatic risk and instead account for process plans (and earned 
value credit models) that acknowledge the reality of the engineering risk and indicate how it can be 
mitigated (as outlined above). Product-line and framework efforts provide significant challenges to 
development estimation, as do commercial, open-source, and vendor infrastructure and services. These 
outsourced products and services, loosely considered as COTS (“commercial off the shelf”), although 
often they may not be commercial or off the shelf, require further adaptation to the estimation models to 
account for the costs of assimilating the product/service, including integration, configuration, ongoing 
upgrade (and consequent adaptation to the subject system), licensing, sourcing risks, and other factors. 
For example, many conventional commercial components and services have refresh cycles, which may 
range from months to many years. The period of these cycles (and the extent of likely incompatibility) 
can often be anticipated on the basis of industry standard practices, but it nonetheless needs to be 

16  See reports from the Government Accountability Office including, GAO, 2004, Defense Acquisitions: Stronger Management 
Practices Are Needed to Improve DoD’s Software-Intensive Weapon Acquisitions, GAO-04-393, Washington, DC: U.S. Printing Office. 
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understood, along with the prospects for “support engagements” from vendors to address urgent and 
critical issues should they arise.

Recommendation 2-2: The DoD should take steps to accumulate high-quality data regarding project 
management experience and technology choices that can be used to inform cost estimation models, 
particularly as they apply to innovative software development projects. 

The current upgrade underway of the reporting quantities and guidance for the DI-MGMT-81739 
and -81740 Software Resource Data Reports is a good example.

Contracting

There are a variety of contracting structures that are available to government program managers. 
Choices are generally made on the basis of goals regarding incentives for the performer. For example, 
the cost-plus-award-fee (CPAF) paradigm tends to front-load the incentives for performance where the 
product is primarily a set of artifacts that define the design, but that do not necessarily provide functional 
capability. It will be important to ensure that future contracts provide a balanced incentive for early 
development of functioning products, as well as early evaluations of performance and robustness.

An iterative process for software development requires somewhat of an iterative or, more precisely, 
an incremental contract with the customer, very much following the concept of a spiral model of soft-
ware engineering.17 For a company to respond to a request for proposals (RFP) with some accuracy, it 
generally must have experience with multiple similar projects on the basis of which it can estimate with 
confidence the resources and risks associated with building and testing a particular system. Some com-
panies frequently offer a fixed-price bid as well, perhaps for as many as half of their projects, although 
the preferred contract is not a fixed price but rather an agreement on the general estimated figure for 
the cost and delivery schedule in chunks, with more specificity for the critical initial deliveries, some 
agreed upon process for continued negotiation around time and schedule for changes, and pricing of 
later parts of the system as more of it is built and delivered. 

A Scenario for SIDRE Incremental Development

One possible way to combine improvement in the precision of estimation with mitigation of early-
stage engineering risk (architecture, scope, hazard analysis) would be for a software customer to start a 
project with an initial scoping and prototyping engagement, lasting a few weeks, depending on the size 
or complexity of the system. This can serve to determine the scope of requirements, assess architecture 
alternatives, identify constituent ecosystems, and address other potential sources of up-front engineer-
ing risk. This affords both the customer and the bidder opportunity to develop more precise (but still 
crude) estimates of the cost and time potentially required for the project. 

This scoping and prototyping phase can be used to identify what are the essential features of the 
system that the customer must have, what are the lower-priority features, and what are the features or 
functions that must be built first for the work to proceed. The company (and the customer) can then 
generate estimates for this first phase of the development work. This can be viewed as developing an 
immature design, but through a mature design process that will eventually lead to a well-validated 
mature design. As this initial phase of the work nears its completion milestone, systems engineers, 
architects, and requirements engineers can then work on a more detailed plan for the next milestone, 
including more specific plans for value measurement that would be used to enhance a baseline overall 
earned value model. The company, if it has experience with similar projects, can use historical data to 
adjust its estimates and add buffer time in the schedule, which will also add costs for manpower.

17  Barry Boehm, 1986, “A Spiral Model of Software Development and Enhancement,” Communication of the ACM 11(4):14-24. 
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In short, the scenario is for the customer to pay for an upfront scoping and prototyping exercise, 
agree to a general budget and timeframe, and then pay in increments as the work proceeds and changes. 
It is critical for the development team to be working extremely closely with the customer such as through 
having weekly or biweekly project updates and sharing information regarding architecture, features, 
and quality attributes of the evolving system in frequent increments. This also affords opportunity for 
risk mitigation regarding validation for critical requirements, enabling operational acceptance and pro-
viding evaluators an opportunity to mitigate the engineering risks they face regarding various kinds 
of evaluation criteria. Regarding budget, it enables the customer to achieve a budget target with essen-
tial features of the system completed and to establish options regarding additional features or quality 
improvements earlier in the lifecycle, thus facilitating negotiations regarding lower-priority features or 
bug-fixing time later on in the project.

The committee notes that real-world project experience has shown time and again that it is the early 
phases that make or break a project. It is therefore of paramount importance to have a strong start-up 
team for the early planning and architecture activities. If these early phases are done right with good 
teams, projects can more often be completed successfully with (stable) nominal teams of capable devel-
opers evolving the applications into the final product. If the early planning and architecture phases are 
not performed adequately, however, then programmatic risks escalate dramatically—even tremendous 
expertise may not succeed in overcoming the consequences of early bad decisions.

The committee also notes that for the largest and most complex systems, and also for many of the 
more innovative systems, the DoD has a strong and direct interest in architecture definition in the early 
project phases. DoD interests in architecture bear on longer-range issues such as interoperability, flex-
ibility, and shifts in quality attributes as infrastructure and associated ecosystems evolve. This implies 
that the DoD must have capability to assess architectural decisions at the early stages as part of the 
overall process. There is a challenge in finding the right balance—on the one hand, contractors must 
fully “buy in” to architecture designs with respect to owning responsibility for outcomes, but, on the 
other hand, the DoD and contractors must be able to collaborate in refactoring or adapting architectures 
when required.

Finding 2-5: Architectural expertise is becoming dramatically more important for the DoD, its advi-
sors, and its contractors. There will be significant and immediate benefits from advances in the state 
of technical support for architecture.

Recommendation 2-3: Update procurement, contracting, and governance methods to include an early 
and explicit architecture phase that reduces the predominant uncertainties in software-intensive 
systems.

Technical support for architecture includes architecture development, modeling, simulation, evalu-
ation of quality attributes (such as performance and security), evaluation of structural attributes (such 
as code compliance, modularity, etc.), and techniques for adaptation. This also includes capture of 
architectural experience to support building on experience. 

Recommendation 2-4: Define architectural leadership roles for major SIDRE projects and provide 
program managers with channels for architectural expertise.

With respect to risk management, if a project is structured in short cycles or milestones, such as 
every 4 or 8 weeks,18 then estimates and teams can be adjusted to try to make up time on the schedule. 
For example, if part of the system is proving to be more difficult than planned to build or to test, then 

18  Agile cycles are typically 30 days, with a deliberate commitment for schedule-driven milestones to provide the dominant 
constraining structure in the management of process. 
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it may be possible to restructure the work plan to enable switching of people from different tasks with-
out running afoul of Brooks’s Law.19 Mitigating risk from a contractual perspective requires reducing 
development cycles, system testing intervals, and feedback opportunities with the customer. Although 
this would vary based on scale, it would typically change release cycle times from units of months to 
units of weeks. This is predicated on identifying the most useful observables to support effective deci-
sion making in the feedback loop implemented in project iterations. Project managers should also be 
identifying early on what parts of the system have high engineering risk—such as complex components 
that are different from systems they have built successfully in the past. 

The use of evolutionary acquisition as emphasized in DoD Instruction (DoDI) 5000.2 implies the 
need for continuing architectural adjustments to accommodate changing priorities, independently 
evolving external interfaces, new releases of COTS products, and termination of support of older COTS 
releases. This will be discussed next. 

REALIZING DoD SOFTWARE BENEFITS VIA DoD INSTRUCTION 5000.02 
AND EVOLUTIONARY ACQUISITION

As discussed above, recent DoD policy in DoDI 5000.02 has established the concept that “evolu-
tionary acquisition” is the recommended way to acquire DoD systems, but the policy does not provide 
detail about how successful evolutionary acquisition can be achieved, particularly in the software arena, 
and in a way that is compatible with the concepts of incremental iterative development. The issue is 
that evolutionary acquisition requires “a militarily useful and supportable operational capability” (DoD 
Instruction 5000.2, p. 13, 2.c.) at each iteration, whereas incremental iterative development does not (and 
should not) require operational capability at every iteration. This is because the iterations in incremental 
iterative development may be focused on discharging particular engineering risks rather than on mani-
festing operational capability. Further, DoD projects currently preparing to apply evolutionary acquisi-
tion find that much of the available acquisition infrastructure (contract forms, exhibits, and data item 
descriptions for reviews and audits, work breakdown structures, requirements, design, test, milestone 
pass/fail criteria, progress payments, award fees, etc.) is still oriented around a model of single-step 
development to prespecified full-system requirements, with portions pre-allocated to software. 

The usual result is a hardware-driven functional-hierarchy system architecture that is incompatible 
with preferred layered, service-oriented software architectures, and accompanying hardware-oriented 
work breakdown structures that encourage software suboptimization20 and translate into management 
structures that hinder rapid software adaptation to change.21 Further, projects are often unaware that 
there are several forms of evolutionary acquisition and choose a form that is poorly matched to their 
project situation. Some initial work has been done to determine the various forms of evolutionary acqui-
sition and to provide top-level criteria for choosing among them, as shown in Box 2.2.

This top-level guidance is a good first step, but it needs considerably more detailed guidance and 
associated methods and tools to ensure its successful application on DoD projects.22 What is most sorely 
needed at this point is an elaboration of the necessary guidance to ensure early software participation in 

19  Brooks’s Law states that adding people to troubled software projects only puts them further behind schedule. See Fred Brooks, 
1975, The Mythical Man Month: Essays on Software Engineering, Reading: Addison-Wesley.

20 See the current revision of MIL-STD-881.
21  Barry Boehm, A. Winsor Brown, Victor Basili, and Richard Turner, “Spiral Acquisition of Software-Intensive System of Sys-

tems,” CrossTalk, May 2004: 4-9.
22  Specific practices for incremental iterative development are discussed in several studies, including DSB, 2009, Report of the 

Defense Science Board Task Force on Department of Defense Policies and Procedures for the Acquisition of Information Technology, Wash-
ington, DC: Office of the Under Secretary of Defense for Acquisition, Technology and Logistics. Available online at http://www.
acq.osd.mil/dsb/reports/ADA498375.pdf. Last accessed August 20, 2010. See also NRC, 2010, Achieving Effective Acquisition of 
Information Technology in the Department of Defense, National Academies Press, Washington, DC. Available at at http://www.nap.
edu/catalog.php?record_id=12823. Last accessed August 20, 2010. The practices are also elaborated in Congressional language 
in the National Defense Authorization Act 2010, Section 804. National Defense Authorization Act (NDAA) of Fiscal Year 2010, 
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systems engineering and criteria for evaluating whether adequate evidence of software feasibility has 
been produced at major DoD acquisition milestones. A particular need is for guidance on stabilizing the 
current increment of evolutionary development while concurrently evolving the software and system 
architecture and plans to enable stabilized development of the next increment.23

Recommendation 2-5: Develop the technical and management infrastructure necessary to simultane-
ously support stabilized, high-assurance development of the current evolutionary increment while 
concurrently evolving the plans and specifications for stabilized development of the next high-assur-
ance increment. 

Intrinsic DoD software Expertise—being a smart customer

The Current State of DoD Software Expertise 

It is widely acknowledged, including within the DoD, that the department does not have sufficient 
organic personnel with the software expertise to meet its needs for today’s more software-intensive pro-
grams.24 Although the DoD develops some software internally, the committe’s focus here is on access to 
expertise that is needed for the DoD to be effective as a savvy and outstanding customer for software. 
This includes the expertise to effectively purchase the larger and less precedented systems as well as the 
precedented systems for which sensitivity to issues such as the choice of ecosystem is key. The necessary 
expertise includes understanding of process, architecture, requirements, and assurance. It also includes 
understanding of the trajectories and adoption trends for both the major commercial ecosystems and 
any involved DoD-intrinsic software ecosystems. The DoD faces challenges in attracting and retaining 
software and systems engineering personnel and also in keeping up to date the skills of the personnel 
they do have.25 Commercial industry also faces challenges because demand for software expertise is 
high and the competition for top project managers and top architects can be particularly fierce because 
these two skills are both critical to success and their ranks are few.

Challenges Particular to the DoD 

The defense environment poses further challenges, notably the difficulty in competing with industry 
to hire the most capable software architects and other experts. This is not simply a matter of salaries. For 
instance, it is noted by the committee that many software engineers and architects become frustrated 
and discouraged working within the constraints of the DoD acquisition process and with the tendency 
toward calcification of their “hands-on” skills that made them valuable to the DoD acquisition process 
in the first place.26 Especially in recent years, the DoD has not shown the desire or ability to develop 

Pub. L. no. 111-84, 111 Congress, (2009). Available online at http://www.wifcon.com/dodauth10/dod10_804.htm Last accessed 
August 20, 2010. 

23  See related discussion in Chapter 4.
24  “The quantity and quality of software engineering expertise is insufficient to meet the demands of government and the 

defense industry.” Excerpted from presentation by Kristin Baldwin, 2008, “DoD Software Engineering and System Assurance,” 
January 15, 2008, p. 4. Available online at http://www.acq.osd.mil/se/briefs/2008-01-15-SSA-Boeing-Interchange.pdf. Last ac-
cessed August 18, 2010.

25  Matthew Weigelt, 2009, “Officials Wants Their Own Software Engineering Experts, But They Don’t Want to Disregard 
Industry’s Experts,” Federal Computer Week. Available online at http://fcw.com/Articles/2009/07/09/DOD-IT-systems-engineers-
outsourcing.aspx. Last accessed August 20, 2010.

26  The committee did note that federally funded research and development centers (FFRDCs) and labs can provide the op-
portunity to technical staff to take breaks from direct support and move to programs under acquisition. These breaks enable 
staff to pursue research and re-connect with their “hands-on” skills that made them valuable to the DoD acquisition process in 
the first place. It keeps their skills current and allows them to cycle back to another acquisition activity with fresh thoughts and 
approaches to developing DoD capabilities.
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BOX 2.2 
Software Risks

The phrase “software risks” often appears in discussions regarding software development projects 
and software-intensive systems engineering projects. It suggests danger and something that should be 
prevented or avoided by project managers. But in fact there are different kinds of risks, and not all of them 
involve danger. Indeed, some have an appropriate and sometimes valuable place in any innovative engineer-
ing process and its management. Most importantly, by acknowledging and managing the various categories 
of risks early in the process, particularly engineering risks but also system risks, overall risks related to both 
the engineering process and the product it develops are reduced. Differences in software risks characterize 
the difference between the development of precedented (routine) capabilities and unprecedented (innova-
tive) system capabilities. Differences in different kinds of software risks characterize the difference between 
“critical systems” and other systems.

Risk, generally speaking, is a product of the probability of occurrence of a consequence with the degree 
of severity or cost of the consequence. Risk can be reduced by reducing the probability or by lessening the 
extent or severity of consequence or both. There are different types of risk; for software categorization is in 
terms of programmatic, system, and engineering risk. (Box 2.1 describes each form of risk in detail.) There 
are often tradeoffs and interactions among these risks. 

An example is response time. To illustrate the differences and interactions, consider an example relat-
ing to a decision regarding response time of a system—for example, how frequently the tracks of enemy 
and friendly units are updated on a display. A longer response time may enable designers to employ prec-
edented infrastructure and other architectural elements, yielding a more predictable engineering process. 
That is, from the perspective of the planning phases, a mostly linear plan to engineer the product is more 
likely to yield a successful outcome. In other words, programmatic risks (or project risks) are low. 

The long response time may, however, create operational difficulties due to insufficient timeliness. This 
is a kind of system risk—the possibility of a system failing to accomplish its mission. That is, while there 
may be low risk in producing a system with a long response time, it may be less likely to be operationally 
valuable. More generally, system risks can pertain to a wide range of hazards and suitability factors in opera-
tions, such as performance, security, usability, valid functionality, and integration and interoperation. System 
risks can also include “long-tail” risks—events with high consequence and low (perceived) likelihood. In 
this latter case it can be difficult to assess how much effort should be applied to mitigate the risk. 

Suppose, on the basis of up-front user studies, it is decided to require a guarantee of a specific short 
response time. This would certainly reduce the system risk related to suitability of the response time. But the 
short response time may preclude use of the commodity infrastructure and, in the absence of validated al-
ternatives, create uncertainties in the engineering phases of the project regarding architectural choices. The 
resulting uncertainties and consequences created within the engineering process are engineering risks. 

Which is the correct architectural choice to make? If the answer is not known until the system is put 
into an operational environment for test and evaluation, then the uncertainty persists for a longer period, 
more engineering investment is made prior to resolution of the uncertainty, and more rework is required 
should the choice need to be revised. Additionally, when one possibility is eliminated, uncertainty may 
remain regarding the choice among the remaining candidate options, and further effort may be required 
to resolve this choice. This adds to engineering risk, and it may add to project risk as well if there is insuf-
ficient allowance in cost and schedule for rework in the project budget. In many cases, the costs of unwind-
ing previous bad decisions become prohibitive, and as a consequence the mismatched architecture (or 
other aspects of the system design) becomes a legacy infliction that is constantly worked around, adding 
to downstream costs and risks.

Evaluation of architectural alternatives through full development and operational tests is rarely re-

quired, however. Techniques such as architectural modeling and simulation, for example, would enable 
the architectural alternatives to be evaluated earlier in the process and at lower cost, lowering engineering 
risk. (See Chapter 5 for a discussion of the associated research challenges.)

The probabilistic models for risk assessment have limitations. A software manager may find it tempting, 
when considering the mathematical characterization of risk as the product of consequence and probability, 
to develop mathematical models for probabilities. This is sometime useful but also can be dangerous, since 
probabilistic models often fail us in software. For example, a security vulnerability could be perceived as 
high consequence, but very low likelihood, and so may be left unaddressed. But once the vulnerability 
becomes known to adversaries (e.g., as a zero-day vulnerability), then the probability can rise dramatically, 
and with it the extent of risk. Unfortunately, probabilistic models fail also because of aspects other than 
security. The possibility of intermittent problems such as deadlocks, for example, can change quite dramati-
cally with changes in processor, communication, or storage infrastructure. Additionally, traditional models 
of redundancy as a means to reduce risk are most effective when event probabilities are not coupled. But 
this proves to be a dangerous expectation in the engineering of software.� 

On the other hand, in systems engineering efforts where software is embedded as part of a cyber-
physical system, there are abundant probabilistic models for faults in attached physical components, and 
these models may have dependencies on other probabilistic models relating to aspects of the operating 
environment. In these cases, the familiar engineering mathematics for reliability must be employed, and the 
results of these analyses will inform the design of software to support tolerance or containment of errors 
resulting from faults in the attached components. 

Credit for engineering risk reduction. The Apollo moon missions of the 1960s had systems risk (hazard) 
related to delivering and returning astronauts safely. This risk could be mitigated through various safety 
mechanisms. In general, there may be little correlation between system risks and the other kinds of risks, 
especially when the systems risk derives primarily from the context of operational use—system risks may 
be much more dependent on characteristics of the operating environment than on precedent regarding 
engineering decisions. But in the case of the Apollo missions, there was also considerable engineering risk, 
particularly early in the process when basic decisions were being made and experimentation and prototyp-
ing was being done to achieve early validation (i.e., prior to operational use) of the decisions made. 

The experience of the prior Mercury and Gemini missions created precedent for many design consid-
erations and so served to discharge certain engineering risks. In addition to relying on hard-won experi-
ence with prior systems, the principal approaches to mitigation of engineering risks involve incremental 
development, prototyping, and modeling and simulation. These methods reduce the cost of consequence 
through early feedback and response afforded. 

For innovative projects, efforts to resolve engineering risks can be a significant component of overall 
project progress, and therefore in an earned value measurement regime there need to be ways to “give 
credit” for identification and discharge of critical engineering risks. This can be a challenge: How, for 
example, can the value to Apollo of the experience of Mercury and Gemini be weighed? Or, at a much 
smaller scale, how can the value of the agile practice of ongoing refactoring be assessed at a time when 
the costs are incurred? The refactoring practice enables teams to retain ongoing control over architectural 
decisions and to enhance the potential for architecture-level adaptation on the basis of future needs. But 
the benefits associated with the refactoring costs may appear only in later cycles, perhaps several months 
later, and until then the return on the refactoring investment may be difficult to assess despite the long-
term value to the project. 

 1 See, e.g., Susan Brilliant, John Knight, and Nancy Leveson, 1989, “The Consistent Comparison Problem in N-Version 
Programming,” IEEE Transactions on Software Engineering 15(11):1481-1485. 
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BOX 2.2 
Software Risks

The phrase “software risks” often appears in discussions regarding software development projects 
and software-intensive systems engineering projects. It suggests danger and something that should be 
prevented or avoided by project managers. But in fact there are different kinds of risks, and not all of them 
involve danger. Indeed, some have an appropriate and sometimes valuable place in any innovative engineer-
ing process and its management. Most importantly, by acknowledging and managing the various categories 
of risks early in the process, particularly engineering risks but also system risks, overall risks related to both 
the engineering process and the product it develops are reduced. Differences in software risks characterize 
the difference between the development of precedented (routine) capabilities and unprecedented (innova-
tive) system capabilities. Differences in different kinds of software risks characterize the difference between 
“critical systems” and other systems.

Risk, generally speaking, is a product of the probability of occurrence of a consequence with the degree 
of severity or cost of the consequence. Risk can be reduced by reducing the probability or by lessening the 
extent or severity of consequence or both. There are different types of risk; for software categorization is in 
terms of programmatic, system, and engineering risk. (Box 2.1 describes each form of risk in detail.) There 
are often tradeoffs and interactions among these risks. 

An example is response time. To illustrate the differences and interactions, consider an example relat-
ing to a decision regarding response time of a system—for example, how frequently the tracks of enemy 
and friendly units are updated on a display. A longer response time may enable designers to employ prec-
edented infrastructure and other architectural elements, yielding a more predictable engineering process. 
That is, from the perspective of the planning phases, a mostly linear plan to engineer the product is more 
likely to yield a successful outcome. In other words, programmatic risks (or project risks) are low. 

The long response time may, however, create operational difficulties due to insufficient timeliness. This 
is a kind of system risk—the possibility of a system failing to accomplish its mission. That is, while there 
may be low risk in producing a system with a long response time, it may be less likely to be operationally 
valuable. More generally, system risks can pertain to a wide range of hazards and suitability factors in opera-
tions, such as performance, security, usability, valid functionality, and integration and interoperation. System 
risks can also include “long-tail” risks—events with high consequence and low (perceived) likelihood. In 
this latter case it can be difficult to assess how much effort should be applied to mitigate the risk. 

Suppose, on the basis of up-front user studies, it is decided to require a guarantee of a specific short 
response time. This would certainly reduce the system risk related to suitability of the response time. But the 
short response time may preclude use of the commodity infrastructure and, in the absence of validated al-
ternatives, create uncertainties in the engineering phases of the project regarding architectural choices. The 
resulting uncertainties and consequences created within the engineering process are engineering risks. 

Which is the correct architectural choice to make? If the answer is not known until the system is put 
into an operational environment for test and evaluation, then the uncertainty persists for a longer period, 
more engineering investment is made prior to resolution of the uncertainty, and more rework is required 
should the choice need to be revised. Additionally, when one possibility is eliminated, uncertainty may 
remain regarding the choice among the remaining candidate options, and further effort may be required 
to resolve this choice. This adds to engineering risk, and it may add to project risk as well if there is insuf-
ficient allowance in cost and schedule for rework in the project budget. In many cases, the costs of unwind-
ing previous bad decisions become prohibitive, and as a consequence the mismatched architecture (or 
other aspects of the system design) becomes a legacy infliction that is constantly worked around, adding 
to downstream costs and risks.

Evaluation of architectural alternatives through full development and operational tests is rarely re-

quired, however. Techniques such as architectural modeling and simulation, for example, would enable 
the architectural alternatives to be evaluated earlier in the process and at lower cost, lowering engineering 
risk. (See Chapter 5 for a discussion of the associated research challenges.)

The probabilistic models for risk assessment have limitations. A software manager may find it tempting, 
when considering the mathematical characterization of risk as the product of consequence and probability, 
to develop mathematical models for probabilities. This is sometime useful but also can be dangerous, since 
probabilistic models often fail us in software. For example, a security vulnerability could be perceived as 
high consequence, but very low likelihood, and so may be left unaddressed. But once the vulnerability 
becomes known to adversaries (e.g., as a zero-day vulnerability), then the probability can rise dramatically, 
and with it the extent of risk. Unfortunately, probabilistic models fail also because of aspects other than 
security. The possibility of intermittent problems such as deadlocks, for example, can change quite dramati-
cally with changes in processor, communication, or storage infrastructure. Additionally, traditional models 
of redundancy as a means to reduce risk are most effective when event probabilities are not coupled. But 
this proves to be a dangerous expectation in the engineering of software.� 

On the other hand, in systems engineering efforts where software is embedded as part of a cyber-
physical system, there are abundant probabilistic models for faults in attached physical components, and 
these models may have dependencies on other probabilistic models relating to aspects of the operating 
environment. In these cases, the familiar engineering mathematics for reliability must be employed, and the 
results of these analyses will inform the design of software to support tolerance or containment of errors 
resulting from faults in the attached components. 

Credit for engineering risk reduction. The Apollo moon missions of the 1960s had systems risk (hazard) 
related to delivering and returning astronauts safely. This risk could be mitigated through various safety 
mechanisms. In general, there may be little correlation between system risks and the other kinds of risks, 
especially when the systems risk derives primarily from the context of operational use—system risks may 
be much more dependent on characteristics of the operating environment than on precedent regarding 
engineering decisions. But in the case of the Apollo missions, there was also considerable engineering risk, 
particularly early in the process when basic decisions were being made and experimentation and prototyp-
ing was being done to achieve early validation (i.e., prior to operational use) of the decisions made. 

The experience of the prior Mercury and Gemini missions created precedent for many design consid-
erations and so served to discharge certain engineering risks. In addition to relying on hard-won experi-
ence with prior systems, the principal approaches to mitigation of engineering risks involve incremental 
development, prototyping, and modeling and simulation. These methods reduce the cost of consequence 
through early feedback and response afforded. 

For innovative projects, efforts to resolve engineering risks can be a significant component of overall 
project progress, and therefore in an earned value measurement regime there need to be ways to “give 
credit” for identification and discharge of critical engineering risks. This can be a challenge: How, for 
example, can the value to Apollo of the experience of Mercury and Gemini be weighed? Or, at a much 
smaller scale, how can the value of the agile practice of ongoing refactoring be assessed at a time when 
the costs are incurred? The refactoring practice enables teams to retain ongoing control over architectural 
decisions and to enhance the potential for architecture-level adaptation on the basis of future needs. But 
the benefits associated with the refactoring costs may appear only in later cycles, perhaps several months 
later, and until then the return on the refactoring investment may be difficult to assess despite the long-
term value to the project. 

 1 See, e.g., Susan Brilliant, John Knight, and Nancy Leveson, 1989, “The Consistent Comparison Problem in N-Version 
Programming,” IEEE Transactions on Software Engineering 15(11):1481-1485. 
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and retain top technical experts within its own ranks, both in the military and civilian, except in very 
particular circumstances.27 Additionally, as discussed below, it has historically proven challenging for 
those software experts who have remained within the DoD to maintain strong technical currency on an 
ongoing basis. Indeed, the committee believes that the extent of software expertise within the DoD is 
shrinking both relative to that of the commercial sector, and perhaps also in absolute terms. 

The false perceptions that software and IT generally are reaching a plateau may lead to erroneous 
conclusions that the DoD can fully delegate such leadership into its supply chain. This is inconsistent 
with the reality of the rapid ongoing growth of software technology (as elaborated in Chapter 1) and 
the essential and growing importance of successful early architecture-focused decision making in the 
development of interlinking defense systems (as elaborated in Chapter 3). 

An additional challenge to the DoD is that the split between technical and management roles will 
result in leaders who, on moving into management, face the prospect of losing technical excellence 
and currency over time. This means that their qualifications to lead in architectural decision making 
may diminish unless they can couple project management with ongoing architectural leadership and 
technical engagement. The DoD does not have strong technical career paths that build on and advance 
software expertise with the exception of the service labs. Upward career progression trends leading 
closer to senior management-focused roles and further away from technical involvement tend to stress 
general management rather than technical management experience. This is not necessarily the case in 
technology-intensive roles in industry. Many of the most senior leaders in the technology industry have 
technical backgrounds and continue to exercise technical roles and be engaged in technology strategy. 
Nonetheless, certain DoD software needs remain sufficiently complex and unique and are not covered 
by the commercial world, and therefore call for internal DoD software expertise. In the DoD, however, 
as software personnel take on more management responsibility, they have less opportunity and incentive 
to stay technically current. At the same time, there is an increasing need for an acquisition workforce 
that has a strong understanding of the challenges in systems engineering and software-intensive systems 
development. It is particularly critical to have program managers who understand modern software 
development and systems. 

Commercial industry also continues to have a strong need for the same types of basic software 
expertise that the DoD needs and in many areas is competing with the DoD for the same pool of talent. 
Notwithstanding the economic downturn, salaries for personnel in these areas remain highly competi-
tive in order to attract key talent. Although there have been improvements in recent years to accom-
modate highly paid technical experts, the DoD and other government pay scales remain generally not 
as competitive with commercial industry, making it more difficult for the DoD to attract and retain 
the expertise it needs. Additionally, the DoD could strengthen its ability to tap into the talent base in 
DoD-aligned research organizations and universities—for example, by sponsoring security clearances 
for technology leaders. 

An additional challenge that DoD faces in obtaining and attracting key talent is the requirement for 
cleared U.S. citizens. Security considerations that often preclude the hiring of non-citizens markedly 
shrink the pool of available software talent. The pool of currently cleared U.S. citizens with the right 
skills is not sufficient to meet the demand, and this pool could be shrinking because of the reduction in 
support by the various agencies (principally the DoD, NASA, and the Department of Energy) of U.S. 
universities in areas related to software producibility. (The Networking and Information Technology 
Research and Development (NITRD) coordination categories are Software Design and Productivity 
(SDP) and High Confidence Software and Systems (HCSS); see Box 1.5.) University programs create 
the most highly qualified technical personnel, from the standpoint of pure technical expertise, which 
can complement DoD expertise in program management. It is the nature of university economics that 

27  See, for example, pp. 8-9 in DSB, November 2000, Report of the Defense Science Board Task Force on Defense Software, Office of 
the Under Secretary of Defense for Acquisition, Technology, and Logistics. Available online at http://www.dtic.mil/cgi-bin/
GetTRDoc?AD=ADA385923&Location=U2&doc=GetTRDoc.pdf. Last accessed August 18, 2010
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production of PhDs, in particular, closely tracks external research support for university projects. The 
recent reductions therefore mean not only that there is less U.S. research in software producibility, 
but also that the pipeline of software-savvy talent is diminishing. Because the DoD will not be able to 
directly hire the necessary talent in the short term to meet its growing needs, it needs to improve access 
to “DoD-aligned” talent through federally funded research and development centers (FFRDCs), Service 
labs, and university and industry research contractors. Flexibility regarding government personnel poli-
cies could allow more movement for leading technical experts in and out of government service, which 
could facilitate DoD maintenance of technical excellence and currency in rapidly changing fields.

For example, because of the rapid growth in the significance of architecture-related capability on the 
DoD side of major systems engineering projects, the committee has considered processes by which the 
DoD can gain access to the very best architectural talent to address cross-cutting architectural require-
ments and validation challenges. These processes include the assembly of architectural study groups and 
review panels of top experts, including experts drawn not just from the intrinsic DoD talent pool, but 
also from industry and research. Options may include focusing on trying to get engineers in mid-career 
in addition to young software engineers and improving the career environment so that, irrespective of 
age, a DoD software engineer can develop and maintain her skills by actually producing software. By 
bringing some software engineering work in-house, the DoD may be able to stimulate interest in DoD 
careers and opportunities.

The question then becomes, How does the DoD effectively become a savvy customer for these 
important IT and software-related services? Traditional methods have involved some combination of 
developing know-how internally and acquiring it from contractors. In each case, the necessary com-
petence must be available to execute the programs, with particular emphasis on technology-intensive 
decision making. In much of this decision making, the DoD must define the “operating environment” 
for major software and systems development efforts performed by its contractors. This operating envi-
ronment includes certain DoD-specific standards for interoperation, assurance, security, and so on. The 
expertise required in the DoD is not identical to the corresponding commercial software engineering 
expertise. For example, DoD large-scale software development is almost always undertaken at arm’s 
length by contractors. This can complicate the implementation of practices that deviate significantly from 
the “requirements-first” RFP model. For innovative systems, as the committee has noted throughout 
the report, there must be ongoing interaction on topics related to architecture, incremental develop-
ment, and preventive practices in support of assurance. Without appropriate expertise and experience, 
these interactions—and associated management of incentives—can be difficult to manage successfully. 
In addition, a growing number of areas of technology-intensive decision making where the DoD has 
particular interests and incentives vary from those of its contractors.

Access to Talent 

Although access needs to be improved, the DoD does, however, have access to a considerable base 
of talent through three DoD-aligned sources: (1) DoD FFRDCs, (2) Service labs, and (3) research con-
tractors in universities and industry. Despite the reduction in funding related to software (see Box 1.5), 
the DoD has nonetheless taken modest but valuable actions to cultivate talent and introduce leading 
young scientists to defense systems and the defense mission. A prominent example is the Computer 
Science Study Group (CSSG) sponsored by DARPA28 that affords opportunities for younger researchers 
to engage more directly with defense technical challenges. 

28  For more information, see http://www.darpa.mil/dso/solicitations/ra07-43.html. Last accessed August 18, 2010.
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Opportunities to Strengthen the DoD’s Software Expertise 

There are two significant building blocks for strengthening the DOD’s intrinsic software expertise 
that leverage the DoD’s particular expertise and responsibilities in two areas—operational test and 
evaluation (OT&E) and information assurance (IA). As noted elsewhere in this report, there are oppor-
tunities to expand the role of OT&E organizations to support preventive approaches to assurance and 
early validation, generally for innovative large-scale systems engineering projects, particularly regard-
ing architecture, process, and key quality attributes—even when detailed decisions regarding specific 
aspects of functional capability are deferred. A successful IA regime will require similar engagement, 
as well as sophisticated interaction between defensive and offensive programs and activities, engage-
ment with those who operate and defend the DoD’s communications networks, and intelligence about 
threats and vulnerabilities. 

In the cases of both OT&E and IA, leaders in practice and technology are understood to reside in 
the DoD (and in similar institutions in other countries). By creating a visible culture of elite technol-
ogy-intensive leadership in these areas, the DoD has the potential to attract top talent, in a manner 
analogous to the ability of the National Security Agency (NSA) to attract top mathematicians. Although 
it is important to “grow the ranks” in these areas, the DoD cannot sustain leadership unless it recruits 
and engages top technical talent.

Summary

Because the DoD does not currently have the requisite expertise and talent it needs for effective 
software producibility and because the rapid pace of software development demands ongoing interac-
tion with the field, the DoD must engage experts outside the DoD and its primes. This engagement, to 
be effective, should be accompanied by internal processes to apply and incorporate contributions and 
feedback to software projects throughout the systems engineering lifecycle. In other words, the DoD 
should adapt processes to facilitate input from outside experts throughout the systems engineering 
lifecycle for software-intensive systems, with particular emphasis on innovative/unprecedented and 
large-scale systems and on systems engineering efforts involving iterative processes.

It is essential to sponsor high-quality software-related research projects. Investing in cutting-edge 
software defense projects creates value not only in advancing innovation, but also in developing a 
pipeline of technical experts with experience tackling DoD software producibility issues. University 
research funding supports research opportunities for undergraduates, graduates students, and post-
doctoral researchers. DoD engagement with the next generation of software experts at formative stages 
in their careers can encourage exploring a career within the DoD, thus increasing the available pool of 
cleared software professionals. 

Also crucial is support for defense-relevant top-tier educational programs in U.S. universities to 
strengthen the pipeline of top technical experts. Targeted postdoctoral grants may be another avenue 
through which the DoD can encourage emerging software professionals to choose careers in the DoD.

Finding 2-6: The DoD has a growing need for software expertise, and it is not able to meet this need 
through intrinsic resources. Nor is it able to fully outsource this requirement to DoD primes. The DoD 
needs to be a smart software customer. This need is particularly significant for large-scale innovative 
software-intensive projects for which there are cross-cutting software architectural requirements and 
validation challenges.

The case for the DoD to have software expertise on its side of the table is compelling. Increasing 
complexity, scale, and interoperability in a context of rapid innovation and sophisticated incremental 
and iterative processes require the DoD to become a knowledgeable customer of software tools and 
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systems. Direct access to this necessary expertise, in light of industry’s competing interest in hiring 
similar professionals, is limited. For these reasons, a combination of (1) outreach to FFRDCs and similar 
DoD focused organizations, academia, and industry and (2) internal DoD education and development 
of software expertise is needed to bridge the gap. 
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 3

Assert DoD Architectural Leadership 
for Innovative Systems

The increasing complexity and scale of software systems demand that the Department of Defense 
(DoD) play an active role in developing and iterating systems architecture throughout the project life-
cycle. This chapter characterizes the special role of architecture in software producibility, describes its 
particular challenges, and discusses how the DoD can strengthen its architectural leadership in software 
development when so much of its software development is conducted by contractors working at arm’s 
length from DoD mission stakeholders. 

Software Architecture and Its Critical Role in Producibility

Software architecture is conventionally defined as “the structure or structures of the system, which 
comprise software components, the externally visible properties of those components, and the relation-
ship among them.”�,� Just as in physical systems, architectural commitments comprise more than struc-
tural connections among components of a system. The commitments also encompass decisions regarding 
the principal domain abstractions to be represented in the software and how they will be represented 
and acted upon. The commitments also include expectations regarding performance, security, and other 
behavioral characteristics of the constituent components of a system, such that an overall architectural 
model can facilitate prediction of significant quality-related characteristics of a system that is consistent 
with the architectural model.

Architecture represents the earliest and often most important design decisions—those that are the 
hardest to change and the most critical to get right. Architecture makes it possible to structure require-
ments based on an understanding of what is actually possible from an engineering standpoint—and 
what is infeasible in the present state of technology. It provides a mechanism for communications among 
the stakeholders, including the infrastructure providers, and managers of other systems with require-
ments for interoperation. It is also the first design artifact that addresses the so-called non-functional 
attributes, such as performance, modifiability, reliability, and security that in turn drive the ultimate 
quality and capability of the system. Architecture is an important enabler of reuse and the key to 

�  Len Bass, Paul Clements, and Rick Kazman, 2003, Software Architecture in Practice, 2nd Ed, Boston: Addison-Wesley.
�  There are other definitions (see http://www.sei.cmu.edu/architecture/published_definitions.html#Modern) but the prin-

ciples are consistent among them.
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system evolution, enabling management of future uncertainty. In this regard, architecture is the primary 
determiner of modularity and thus the nature and degree to which multiple design decisions can be 
decoupled from each other. Thus, when there are areas of likely or potential change, whether it be in 
system functionality, performance, infrastructure, or other areas, architecture decisions can be made to 
encapsulate them and so increase the extent to which the overall engineering activity is insulated from 
the uncertainties associated with these localized changes.�

Attention to the architecture is not limited to just the design and coding phases of software. Integrity 
of the architecture is maintained, often with supporting code analysis tools, throughout the software 
system lifecycle. This is done because a single software change at any stage, including maintenance in 
the latter stages of a system lifecycle, can violate the key architectural decision parameters essential for 
acceptable system behavior, for future evolution and enhancement, and for assurance.� During construc-
tion of a system, the architectural perspective is essential to assessing progress and risks, and the ability 
to make decisions and tradeoffs among various alternatives. 

As systems scale up, the extent of effort that must be devoted to architecture also scales up, and 
slightly more steeply so that a greater percentage of overall effort is devoted to architectural consid-
erations.� These include design, tradeoff analysis with respect to quality attributes from requirements, 
identification and analysis of precedent and related ecosystems, etc. It is noted by Boehm and Turner� 
that risk and precedent drive the balance between practices appropriate for precedented systems (i.e., 
“plan-driven methods”) and practices appropriate for innovative systems (i.e., “agile methods”). As 
noted in Chapter 1, larger-scale systems most often must include both kinds of practices, especially when 
architectural design successfully localizes or encapsulates innovative elements and maximizes use of 
precedented ecosystems and infrastructures. (For further discussion of architecture, see Box 3.1.) 

As also noted in Chapter 1, precedented systems are those systems whose capabilities and attributes 
are highly similar to those that have been produced before and therefore do not require significant soft-
ware innovation. In these cases, from the standpoint of engineering risks, the most critical precedents 
are not of requirements, but of architecture—whenever possible, the software architecture should be 
well understood and derived from an analysis of previous instances of the architecture. The analysis 
should strongly influence the development of the software architecture for the new system, as should 
an understanding of the likely evolution of the involved ecosystems—and incremental evolution is 
characteristic of successful ecosystems. Major weapon and command-and-control systems may typically 

�  The nature of modularity and its value to business outcomes are explored in Alan MacCormack, John Rusnak and Carliss 
Baldwin, 2007, “The Impact of Component Modularity on Design Evolution: Evidence from the Software Industry,” Harvard Busi-
ness School Technology & Operations Mgt. Unit, Research Paper No. 08-038. Available at SSRN http://ssrn.com/abstract=1071720. 
Last accessed August 20, 2010; and Carliss Baldwin and Kim B. Clark, 2000, Design Rules, Volume 1, The Power of Modularity, 
Cambridge, MA: MIT Press. 

�  One of the first studies of the consistency of modeled architectural intent and as-built reality in a very-large-scale code base was 
undertaken by Gail C. Murphy, 1996, “Architecture for Evolution,” in Alexander L. Wolf, Anthony Finkelstein, George Spanou-
dakis, and Laura Vidal, eds., Proceedings of 2nd International Software Architecture Workshop (ISAW’96), San Francisco: ACM, pp. 
83-86. Follow-up work is reported in Martin P. Robillard and Gail C. Murphy, 2003, “FEAT: A Tool for Locating, Describing, and 
Analyzing Concerns in Source Code,” Demonstration Session, Proceedings of the 25th International Conference on Software Engineering 
(ICSE’03). Portland, OR, May 2003, pp. 822-823.

�  See Barry Boehm, Ricardo Valerdi, Eric Honour, 2008, “The ROI of Systems Engineering: Some Quantitative Results for 
Software-Intensive Systems,” Systems Engineering (11)3:221-234; Mark W. Maier and Eberhardt Rechtin, 2000, The Art of Systems 
Architecting, 2nd Ed., Boca Raton: CRC Press; Manuel E. Sosa, Steven D. Eppinger, Craig M. Rowles, 2004, “The Misalignment of 
Product Architecture and Organizational Structure in Complex Product Development,” Management Science 50(12):1674-1689; Alan 
MacCormack, John Rusnak, and Carliss Y. Baldwin, 2006, “Exploring the Structure of Complex Software Designs: An Empirical 
Study of Open Source and Proprietary Code,” Management Science 52(7):1015-1030; and Manuel E. Sosa, Jürgen Mihm, and Tyson 
Browning, 2009, “Can We Predict the Generation of Bugs? Software Architecture and Quality in Open-Source Development,” 
INSEAD Working Paper 2009/45/TOM.

�  Barry Boehm and Richard Turner, 2003, “Using Risk to Balance Agile and Plan-Driven Methods,” Computer 36(6):57-66. Avail-
able online at http://faculty.salisbury.edu/~xswang/Research/Papers/SERelated/Agile/r6057.pdf. Last accessed August 20, 
2010.
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BOX 3.1 
Software Architecture

Software system architecture is conventionally defined as the structure or structures of the system, 
which comprise software components, the externally visible properties of those components, and the 
relationship among them. In essence, architecture is the set of organizing principles, both structural and 
semantic, that constrain the ways by which software elements of a system interact. A well-conceived soft-
ware architecture can facilitate separation among work assignments allocated to software developers be-
cause it defines key elements of the “contracts” that regulate the intended connections among software 
elements. 

Architectural commitments for a software system have implications throughout the lifecycle of the 
system. Architectural commitments can predict critical quality attributes related to performance, security, 
reliability, and other “non-functional” properties. As a consequence, architectural decisions are among the 
most important first decisions program managers and stakeholders make yet the most difficult to change 
or correct.

The committee’s definition of software architectures includes more than just structural considerations 
relating to which components may interact with which other components through what kinds of “con-
nectors.”� Semantic architectural commitments may relate to protocols, data representation invariants, 
exceptional flow of control, timing properties and deadlines, concurrency and threading, pattern compli-
ance, and other attributes. This combination of structural and semantic commitments is of benefit when 

�  David Garlan, 2003, “Formal Modeling and Analysis of Software Architecture: Components, Connectors, and Events” 
in Formal Methods for Software Architectures, Pp. 1-24 in Formal Methods for Software Architectures, Marco Bernardo and 
Paola Inverardi, eds., Berlin: Springer Publishers.

it is transparent—that is, susceptible to modeling, analysis, and management of consistency with code. 
This enables software developers to more readily predict behaviors and interactions among existing and 
proposed system elements. 

Software architecture also has implications for how users interact with software systems, in the sense 
that architectural commitments can regulate the responsiveness of a system to user redirection due to shifts 
in operational needs. 

In some cases, a systems concept may be amenable to well-established architectural concepts and 
design ideas. The resulting system implementations are considered precedented systems because they rely 
on best-practice architectural designs or styles.� Often these designs are manifest in established software 
ecosystems that have emerged around similar system concepts, as in the case of web services implemen-
tations. In other cases, the proposed functionality and/or its associated quality attributes are sufficiently 
novel and complex that already established architectural concepts may not fully suffice. In these cases, 
new system architectures must be developed and validated in order to implement the proposed system 
concepts. This is very frequently the case in the DoD due to its unique mission and the reality of continued 
aggressive growth in functional and quality requirements. This report focuses primarily on the conception, 
design, and development of these innovative or “unprecedented” systems. 

Although well-matched architecture is not a guarantee of success in system development projects, 
many project failures have been associated with inappropriate, late-breaking, or poorly articulated software 
architectures. Applying architectural design best practice can help decrease failure risks for both develop-
ment projects and also (because of influence on quality attributes) for system operations. 

2 Mary Shaw and David Garlan, 1996, Software Architecture: Perspectives on an Emerging Discipline, Upper 
Saddle River, NJ: Prentice Hall. 

contain many innovative elements, as do some DoD business systems. Nevertheless, there are very often 
large spans of functionality that are precedented. This means the overall system architecture is likely to 
include a mix of precedented and innovative structures. 

In modern systems, the concept of “architecture” has broadened to include not only structural com-
mitments (as noted in the definition at the start of this chapter), but also other design commitments 
that constrain and guide subsidiary design decisions, particularly decisions regarding how components 
of the system are meant to interact with other components. Architecture commitments open or close 
opportunities for future evolution and enhancement. In other words, it is risky if not impossible to evalu-
ate different alternatives or different vendors without an understanding of the architectures implicit in 
what they propose.

In particular, modern software ecosystems have a set of architectural commitments at their core. 
Web services, for example, are structured in conventional ways with well-defined software interfaces 
among the components and, additionally, a number of “rules of the road” regarding what are appro-
priate interactions across those interfaces (examples shown in Chapter 1). Another example is modern 
data-intensive computing, such as done extensively at companies such as Google and Yahoo!. Much 
of this data-intensive computing activity shares a single relatively simple system architecture concept, 
called MapReduce, which is designed to address the challenges of distributed computing with enor-
mous amounts of data. The MapReduce concept has turned out to be applicable to a very wide range 
of problems, with the result that there is now a growing community of users for a “big data” ecosystem 
focused around a set of open-source tools.� Despite the technical simplicity of the MapReduce meta-

�  Hadoop, Zookeeper, HDFS and MapReduce at Apache are explained further online at http://hadoop.apache.org/.
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BOX 3.1 
Software Architecture

Software system architecture is conventionally defined as the structure or structures of the system, 
which comprise software components, the externally visible properties of those components, and the 
relationship among them. In essence, architecture is the set of organizing principles, both structural and 
semantic, that constrain the ways by which software elements of a system interact. A well-conceived soft-
ware architecture can facilitate separation among work assignments allocated to software developers be-
cause it defines key elements of the “contracts” that regulate the intended connections among software 
elements. 

Architectural commitments for a software system have implications throughout the lifecycle of the 
system. Architectural commitments can predict critical quality attributes related to performance, security, 
reliability, and other “non-functional” properties. As a consequence, architectural decisions are among the 
most important first decisions program managers and stakeholders make yet the most difficult to change 
or correct.

The committee’s definition of software architectures includes more than just structural considerations 
relating to which components may interact with which other components through what kinds of “con-
nectors.”� Semantic architectural commitments may relate to protocols, data representation invariants, 
exceptional flow of control, timing properties and deadlines, concurrency and threading, pattern compli-
ance, and other attributes. This combination of structural and semantic commitments is of benefit when 

�  David Garlan, 2003, “Formal Modeling and Analysis of Software Architecture: Components, Connectors, and Events” 
in Formal Methods for Software Architectures, Pp. 1-24 in Formal Methods for Software Architectures, Marco Bernardo and 
Paola Inverardi, eds., Berlin: Springer Publishers.

it is transparent—that is, susceptible to modeling, analysis, and management of consistency with code. 
This enables software developers to more readily predict behaviors and interactions among existing and 
proposed system elements. 

Software architecture also has implications for how users interact with software systems, in the sense 
that architectural commitments can regulate the responsiveness of a system to user redirection due to shifts 
in operational needs. 

In some cases, a systems concept may be amenable to well-established architectural concepts and 
design ideas. The resulting system implementations are considered precedented systems because they rely 
on best-practice architectural designs or styles.� Often these designs are manifest in established software 
ecosystems that have emerged around similar system concepts, as in the case of web services implemen-
tations. In other cases, the proposed functionality and/or its associated quality attributes are sufficiently 
novel and complex that already established architectural concepts may not fully suffice. In these cases, 
new system architectures must be developed and validated in order to implement the proposed system 
concepts. This is very frequently the case in the DoD due to its unique mission and the reality of continued 
aggressive growth in functional and quality requirements. This report focuses primarily on the conception, 
design, and development of these innovative or “unprecedented” systems. 

Although well-matched architecture is not a guarantee of success in system development projects, 
many project failures have been associated with inappropriate, late-breaking, or poorly articulated software 
architectures. Applying architectural design best practice can help decrease failure risks for both develop-
ment projects and also (because of influence on quality attributes) for system operations. 

2 Mary Shaw and David Garlan, 1996, Software Architecture: Perspectives on an Emerging Discipline, Upper 
Saddle River, NJ: Prentice Hall. 

phor, its ecosystems include highly complex infrastructure to support reliability and robustness in the 
face of intermittent failures of individual components in large-scale data centers, such as commodity 
processors and disk drives. This enables data centers to be established with larger numbers of cheap 
commodity components rather than the more expensive options of highly reliable components, or of 
overall task-level checkpointing, etc.� This ecosystem shares architectural characteristics with Google’s 
internal MapReduce ecosystem.� 

A consequence is that architectural decision making for any particular software development project 
is profoundly influenced by knowledge of related ecosystems, of systems and hardware infrastructure, 
of available frameworks and libraries, and of previous experience with similar systems and projects. 
Small changes to architectural requirements can open or close opportunities to exploit rich existing 
ecosystems, greatly reducing both cost and risk. 

�  Such was the experience of the Aegis High Performance Distributed Computing Program HiPer-D project to replace expensive 
“mission-critical” single processors with a network of multiple affordable processors that can be made more survivable using 
techniques of distributed computing. For more information, see, for example, L. R. Welch, Binoy Ravindran, Robert D. Harrison, 
Leslie Madden, Michael W. Masters, and Wayne Mills, 1996, “Challenges in Engineering Distributed Shipboard Control Systems,” 
in Proceedings of Work-in-Progress Session of the IEEE Real-Time Systems Symposium, December 1996, available at http://citese-
erx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.4454&rep=rep1&type=pdf. Last accessed August 20, 2010. See also Karen F. 
O’Donoghue and David T. Marlow, 1998, “The Application of NTP to Navy Platforms,” 29th Annual Precise Time and Time Interval 
(PTTI) Meeting, Long Beach, CA, December 1997. 

�  Jeffrey Dean and Sanjay Ghemawat, 2004, “MapReduce: Simplified Data Processing on Large Clusters,” OSDI’04: Sixth Sym-
posium on Operating System Design and Implementation, San Francisco, CA, December 2004. Available online at http://labs.google.
com/papers/mapreduce.html. Last accessed August 20, 2010.
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Consider, for example, choices made by developers of a software system that involves complex 
interactive graphical user interaction (GUI) to visualize results stored in a large database, such as results 
of modeling and simulation. The architecture of this software system will be influenced by available 
choices for the database and the GUI frameworks. The architecture of the overall application will be 
guided by several factors: (1) framework design constraints implicit in the GUI frameworks available, 
(2) database interfaces offered by potential vendors, and (3) prior experience in developing interac-
tive visualization systems for modeling and simulation. The architectural decisions are thus informed 
by experience, by knowledge of the principal ecosystems and conventional structures used for GUI 
frameworks and databases, by particular refinements of those conventional structures associated with 
candidate software components, and by infrastructure commitments.

Architecture can often be reused across similar products, encouraging development of supporting 
tools to facilitate its reuse. In a product-line approach, a family of related systems shares architectural 
elements and components. This kind of approach offers not only significant cost advantages, but also 
promotes faster time to market, ability to reuse infrastructure, and, perhaps most importantly, signifi-
cantly reduced engineering risk (i.e., uncertainties and consequences related to the process of making, 
acting on, and validating design commitments during the engineering process). Indeed, sound architec-
tural decisions, often even more than requirements decisions, are a principal enabler of product lines, of 
flexibility in evolution and maintenance, of ability to exploit the rapid growth in hardware infrastructure 
(processors, storage, communications), and of ability to build effectively on the increasingly powerful 
base of software infrastructure (operating systems, databases, GUI frameworks, etc). 

Software Architecture in Industry

Industry leaders in the development of software pay considerable attention to the software architec-
ture as an essential, not an accidental, set of design decisions. Throughout a system’s lifecycle, a managed 
software architecture provides critical evidence that a software-reliant system is capable of meeting its 
business and mission goals. Respected companies such as Microsoft, Intuit, IBM, J.P. Morgan, Bosch, 
and Siemens engage in rigorous training and certification processes for their architects.

In the case of Microsoft, software architects are drawn from the most senior and accomplished 
technical people in the company and have the responsibility for investigating architectural alterna-
tives, designing a system’s architecture, and ensuring that the resulting software product adheres to 
the desired architecture. At one time, the Windows team had an architecture review board composed 
of senior technical contributors and tasked with reviewing all groups’ potential changes and extensions 
to Windows.

IBM has evolved corporate standards for technical roles and technical career paths for software 
professionals including architects. These senior positions are achieved through years of apprenticeship, 
a track record of accomplishment, and approval by a certification board composed of technical peers. 
Titles such as senior IT architect, distinguished engineer, and IBM fellow reflect highly influential roles 
with “executive” standing within IBM.

In addition to staffing and standards, architecture, or rather architectural reuse, plays an important 
role in the development of many successful commercial ecosystems and product lines. To take just one 
example of a product line, Apple’s recently introduced iPad tablet reuses in large measure the software 
architecture from the iPhone. The iPhone, in turn, reuses many key architectural and infrastructural 
elements from systems as early as the NeXT computer, which was introduced more than two decades 
ago.

Many product-line commonalities exist across time, in the sense of architecture designed to antici-
pate evolution of capability, institutional growth in capacity, and other “natural” steps of growth. The 
generality of a suitable systems architecture is significant for the DoD because many of its systems 
persist for several decades. 

But there is a danger in misconstructing the concept of “generality” in architecture. It is well estab-
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lished in software practice—and a core tenant of agile techniques—that excessive structural generality at 
the outset of a project can create enormous inefficiencies and engineering risks, slowing down developers 
who must provision that generality despite the fact that it may not be needed downstream. The gener-
ality also creates added engineering risk, because it complicates the natural progression of change and 
evolution that is characteristic of incremental development and long-lived software systems generally. 
There is thus a balance that must be struck. The best “generality” may be in the form of well-crafted 
“seed” commitments at the outset of a project that can: (1) establish architectural direction, (2) yield the 
intended benefits in quality attributes and flexibility, and (3) afford engineering leaders sufficient intel-
lectual control and flexibility to enable ongoing refactoring as required over a systems lifecycle. 

Other product-line commonalities exist within subsystems or in components of larger systems—that 
is, “product line” is not just meaningful at the level of overall systems. As DoD systems scale up and 
interconnect, the architectural commonalities that comprise “product lines” could focus increasingly on 
designs for the common protocols that support interlinking and for the many sets of data formats and 
representations that are needed to permit information flow among DoD and other systems. The com-
mittee characterize these as “architectural” commonalities because they serve in the role described at 
the outset of this chapter—as key design commitments that support quality attributes and that constrain 
implementation choices.

Finding 3-1: Industry leaders attend to software architecture as a first-order decision, and many follow 
a product-line strategy based on commitment to the most essential common software architectural 
elements and ecosystem structures.

Note that this finding focuses on the most essential commitments as comprising initial architectural 
decisions—more is not necessarily better.

Architectural Problems as a Source of Software Problems

Whether or not it is explicitly identified and managed, every software system has an architecture, 
and larger systems have multiple levels of architecture definition, addressing design choices regarding 
subsystems and components. Although having a well-matched architecture is not a guarantee of suc-
cess, software systems that are not based on well-formulated software architectures are more likely to 
exhibit the kind of software horror stories too often experienced in DoD acquisitions with respect to 
project risk.10 At the product level, with respect to systems risk, these are the systems with communi-
cations bottlenecks, systems that hang up or crash, systems that have difficulty re-synchronizing after 
disconnect, systems with database access that is sluggish or unpredictable, and systems that users judge 
as overly complex. 

These horror stories also occur in previously well-performing legacy systems after a maintenance 
release, often because code changes violate the architecture, which in many cases was not explicit and 
therefore not managed. At the process level, these are the systems that are unable to exploit established 
and evolving ecosystem infrastructure and improving software component capabilities, that cannot 
readily interoperate and federate with other systems, that defy effective quality evaluation practices, 
and that iterate in development without convergence (so-called “death spirals”). Perhaps most signifi-
cantly, these are the systems whose engineering risks and uncertainties most often fail to resolve and 

10  See Daniel L. Dvorak, 2009, “NASA Study on Flight Software Complexity,” Technical Report, AIAA Infotech@Aerospace Confer-
ence, April 6-9, 2009, Seattle: American Institute of Aeronautics and Astronautics, Inc.; see also J. Elm, D. Goldenson, K. Emam, K. 
Donatelli, and A. Neisa, NDIA SE Effectiveness Committee, 2008, A Survey of Systems Engineering Effectiveness, Software Engineer-
ing Institute, Carnegie Mellon University, CMU/SEI-2008-SR-034, available online at http://www.sei.cmu.edu/reports/08sr034.
pdf, last accessed August 20, 2010. See also NRC, Daniel Jackson, Martyn Thomas, and Lynette I. Millett, eds. Software for Depend-
able Systems: Sufficient Evidence? Washington, DC: National Academies Press. Available online at http://www.nap.edu/catalog.
php?record_id=11923. Last accessed August 10, 2010. 
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so are transformed into system and project risks (Chapter 2). Recent Studies by the Defense Science 
Board (DSB) and NASA confirm that software architectural issues are identified as a systemic cause of 
software problems.11,12

The DOD Experience with Architecture-Based DevelopmenT

The DoD experience with long-term software acquisition programs has provided strong evidence 
for the value of software architecture. The Air Force Command Center Processing and Display System-
Replacement (CCPDS-R) program13 demonstrated the benefits of architecture-based development and 
the value of supporting tools, even when developed for a single program.14 In addition, the 1994 DSB15 
study observed that for many DoD systems, both the functionality and the non-functional attribute 
requirements were similar to previously acquired systems, and could be subjected to the kind of 
analysis that the Air Force Electronic Systems Division (ESD)16 performed on Command Centers. In a 
demonstration program called PRISM (Portable Reusable Integrated Software Module), ESD analyzed 
the Command Centers that it had helped acquire over the preceding decade. Based on that analysis, a 
common architecture was developed that could be tailored to accommodate unique requirements so 
that ESD could support a product line for a class of command centers.17 

ESD also recognized that such common architecture could be supported by a collection of tools, 
including code generation, that as a suite significantly reduced the risk, cost, and time required to acquire 
a new command center. In this manner, success in innovation in early designs yields explicit precedent, 
in the form of architectural successes, that can reduce at-the-margin costs and risks for adding new com-
mand centers and incremental new functionalities. A similar demonstration effort was supported by the 
Air Force Aeronautical Systems Division (ASD) for development of a prototype architecture for aircraft 
simulators.18 That demonstration showed that the Air Force was able to acquire simulators for different 

11  Defense Science Board (DSB), 2009, Report of the Defense Science Board Task Force Department of Defense Policies and Procedures 
for the Acquisition of Information Technology, Washington, DC: Office of the Under Secretary of Defense for Acquisition, Technology, 
and Logistics. Available online at https://www.stk.com/downloads/resources/download/risk-and-cost-reduction/2009-04-
IT_Acquisition_New.pdf. Last accessed August 20, 2010.

12  Daniel L. Dvorak, ed., March 2009, “NASA Study on Flight Software Complexity,” Jet Propulsion Laboratory California 
Institute of Technology, Pasadena, CA. Available online at http://oceexternal.nasa.gov/OCE_LIB/pdf/1021608main_FSWC_ 
Final_Report.pdf. Last accessed August 20, 2010.

13  “The Air Force’s Command Center Processing and Display System Replacement (CCPDSR) program provides another reuse 
variation. TRW, the prime contractor, took software developed and funded under the CCPDSR contract, and updated and re-
worked the product using internal funds, with the intention of selling it commercially. TRW was successful and has since licensed 
it, under the acronym UNAS (Universal Network Architecture Services), to both Digital Equipment Corporation and Rational. … 
Clearly, this reuse occurred through TRW’s initiative, and has been commercially successful. Other applications which may benefit 
from work done under CCPDSR include ATCCS and the Air Force’s Systems Software and Design Center.” Quoted from Unisys 
Corporation, March 1991, US45 - Current FAR and Budget/Finance Requirements, Reston, VA. Available online at http://www.dtic.
mil/cgi-bin/GetTRDoc?AD=ADA240917&Location=U2&doc=GetTRDoc.pdf. Last accessed August 20, 2010.

14  Walker E. Royce, 1998, Software Project Management: A Unified Framework, Reading: Addison Wesley. 
15  DSB, 1994, Report of the Defense Science Board Task Force on Acquiring Defense Software Commercially, Washington, DC: Office of 

the Under Secretary of Defense for Acquisition, Technology, and Logistics.Available online at http://www.dod.gov/pubs/foi/
reading_room/859.pdf. Last accessed August 20, 2010.

16  ESD and ASD were part of the Air Force Systems Command (AFSC) until 1992 when the Air Force Materiel Command was 
established.

17  Randall W. Lichota, Robert L. Vesprini, Bruce Swanson, 1997, “PRISM Product Examination Process for Component Based 
Development,” 5th International Symposium on Assessment of Software Tools (SAST ‘97), Pittsburgh, PA, June 3-5, p. 61.

18  William K. McQuay, 1997, “Air Force Modeling and Simulation Trends: Modeling and Simulation Makes Possible the Unaf-
fordable.” Program Manager Magazine, September-October 1997: 128-132. Available online at http://www.dau.mil/pubscats/
PubsCats/PM/articles97/ms_usaf.pdf. Last accessed August 20, 2010. See also William K. McQuay, 1996, “Modeling and simu-
lation trends and J-MASS technology,” Proceedings of the IEEE 1996 National Aerospace and Electronics Conference (NAECON),May 
20-23,1996 , Dayton OH, pp. 579-584. Available online at http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=517707&i
snumber=11050. Last accessed August 20, 2010.
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aircraft using the same base architecture at significantly lower cost and on an accelerated schedule, even 
in parallel with the aircraft development. Similarly, tools were developed to support the effort. 

These demonstration projects were originally conducted in the late 1980s and promised to put the 
DoD in a leadership position with respect to software architecture-driven acquisition. Based on these 
promising demonstration efforts and similar experience among industry leaders, the DSB recommended 
that the DoD institute an architecture-driven acquisition strategy for software-intensive systems.19 The 
DSB also recommended that other application areas be similarly analyzed and common software archi-
tectures developed to establish the basis of a product line. 

Unfortunately, these demonstration programs were not continued. This was largely for the reason 
that the DSB has cited as a primary inhibitor—namely that each program is autonomous and believes 
that its requirements are somehow unique, and thus conformance with precedent could be perceived 
as excessive compromise. The reality is that such conformance is a principal pattern of successful com-
mercial innovation, even for the most aggressive projects. The study recommended that the Program 
Executive Offices (PEOs) be given funding and staffing to perform such analyses and develop or acquire 
appropriate software architectures. That advice has been repeated by the DSB in other studies. The ben-
efits of such approaches are proven, significant, and well documented by industry case studies across 
multiple domains.20

One of the challenges to success is the capability of the PEO organization to make the technical case 
for a set of architectural decisions that constrain the decision space of program offices and primes. These 
constraints provide broad advantage across a family of systems and for particular system development 
efforts, with respect to precedent and risk. Chapter 2 considers the nature of engineering risk and the 
considerable benefits of reducing it by following precedented architectural pathways. Unfortunately, 
those benefits (or architectural reuse) may not be easily measured at the outset, while at the same time 
designers and developers may have concrete complaints over the architectural constraints imposed (also 
at the outset) so that those downstream benefits can be realized. Additionally, contractors (and govern-
ment program managers) may not always be offered appropriate incentives. The natural inclination is 
to develop new architectures and infrastructural elements rather than compromise some autonomy, 
accept modest near-term engineering risk (in exchange for mitigation of major long-term engineering 
risk), and implement a bias toward adopting existing infrastructure, product-line architectures, and 
other ecosystem models.21

 Another trend within the DoD is to find ways to accelerate fielding of new capabilities. One idea 
beginning to get traction is to focus on getting 80 percent of the requirement fulfilled in significantly 
less time and cost.22 One enabler of rapid deployment with reduced risk is to base the development on 
known software architectures that are appropriate to the application or to develop architectures such that 
they support incremental releases while still providing persistent quality behavior. Although there are 
intrinsic incentives in the commercial product space, as noted above, those incentives may not always 
be present in system acquisition efforts, unless there is appropriate planning at the outset.

19  DSB, 1994, Report of the Defense Science Board Task Force on Acquiring Defense Software Commercially, Washington, DC: Office 
of the Under Secretary of Defense for Acquisition, Technology, and Logistics, Washington, DC. Available online at http://www.
dod.gov/pubs/foi/reading_room/859.pdf. Last accessed August 20, 2010.

20  “Catalog of Software Product Lines” Sofware Engineering Institute.edu http://www.sei.cmu.edu/productlines/plp_catalog.
html. Last accessed August 20, 2010

21  Several of the ideas mentioned here and in Chapter 2 are supported in Section 804 of the 2010 National Defense Authorization 
Act. National Defense Authorization Act (NDAA) of Fiscal Year 2010, Pub. L. no. 111-84, 111 Congress, (2009). Available online at 
http://www.wifcon.com/dodauth10/dod10_804.htm. Last accessed August 10, 2010. 

22  DSB found that “Program management does not encourage 80% solution for 20% cost.” On p. 23 in DSB, June 1994, Report 
of the Defense Science Board Task Force on Acquiring Defense Software Commercially, Washington, DC: Office of the Under Secretary 
of Defense for Acquisition and Technology. Available online at http://www.dod.gov/pubs/foi/reading_room/859.pdf. Last 
accessed August 10, 2010. 
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Finding 3-2: The technology for definition and management of software architecture is sufficiently 
mature, with widespread adoption in industry. These approaches are ready for adoption by the DoD, 
assuming that a framework of incentives can be created in acquisition and development efforts.

Finding 3-3: The DoD would benefit from explicit attention to software architecture and industry 
best practice, including (1) formalizing career paths and role descriptions for software architects, (2) 
identifying ways that DoD-aligned software architects can provide objective advice (see Chapter 2), 
and (3) enhancing organizational structures to support effective architectural leadership.

This finding applies to both precedented and innovative ecosystems. Architecture is increasing 
in importance due to the broadening role of software in systems, the increasing interlinking of sys-
tems, and the growing role of ecosystems and the consequent growth in access to common software 
infrastructure.

Despite the organizational presence of PEOs, the committee has unfortunately not seen evidence 
that the DoD has moved toward an overall acquisition strategy for innovative software-intensive sys-
tems in which software architecture has a principal role. As noted above, such approaches can make 
sense for several possible reasons: First, where software requirements for multiple systems are similar, 
software architectural commitments enable product-line strategies, with the benefits not only of reuse 
of common infrastructure, but also of reduced engineering risk because the reuse is planned. A bias 
toward commonality across similar systems is the means by which new software ecosystems are created 
(Chapter 1). The resulting benefits in cost can be very significant—sometimes an order-of-magnitude 
reduction. A second rationale for early architectural commitment is planning for interoperation. Indeed, 
many of the identified post-deployment difficulties with interoperation and platform evolution are 
symptoms of insufficient planning with respect to requirements and architecture. A third benefit, very 
important for management of costs and engineering risk in long-lived defense systems, is planning for 
flexibility—architecture commitments effectively define and encapsulate areas where change is antici-
pated, or not (more on this aspect below).

Admittedly, at the time of the initial 1994 DSB recommendation,23 software architecture was not as 
well understood, and supporting practices and technology not as well developed, as they are today. In 
the ensuing 10 years, a significant body of work has been amassed that validates these recommendations 
and codifies best practices. Books have been written about software architecture, software architecture 
training is available, universities offer courses, software architecture assessment methodologies are 
available, and code validation tools are available to verify consistency with the architecture. 

Finding 3-4: Several DoD programs are using software architecture-driven acquisition with success-
ful results.

There are programs that followed an acquisition strategy driven by early commitments regarding 
software architecture and that illustrate the benefits that would be obtained from a pervasive commit-
ment to an architecture-driven approach. For example, the Army Integrated Battle Command System 
(IBCS), the Air Force Joint Mission Planning System (JMPS) and the Navy Common Link Integration 
Processing (CLIP) Program had architecture-driven approaches written into the request for proposals 
(RFP) and contract language. Software architecture played a major role in the RFP and source-selection 
activities in the Navy DDG-1000 Program. The Army Warfighter Information Network-Tactical (WIN-T) 
has applied an architecture-centric approach in two different acquisition phases after the contract was 

23  DSB, November 1994, Summer Study on Information Architecture for the Battlefield, Washington, DC: Office of the Under Secre-
tary of Defense for Acquisition, Technology. and Logistics. Available online at http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD
A286745&Location=U2&doc=GetTRDoc.pdf. Last accessed August 20, 2010.
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in place and has conducted both software architecture and system architecture evaluations using the 
Architecture Tradeoff Analysis Method (ATAM).24 

The Air Force GPS-OCX Program is also pursuing an architecture-driven approach. Recognizing 
the importance of the software architecture and providing for contractual means to ensure appropriate 
software architecture practices and artifacts have provided early, objective evidence about software struc-
ture and system behavior. Moreover the Air Force has established baselines against which to manage 
software development over the lifecycle. Such efforts, when supported with appropriate analysis tools, 
identify risks early in the lifecycle and, when such risks are mitigated, significantly reduce overall 
program risk.

The Army’s Strategic Software Improvement Program (ASSIP), which seeks to improve the way in 
which the Army acquires software-intensive systems, established an architecture initiative to increase 
the focus on software architecture as part of major systems acquisitions and to develop organic capabil-
ity within the Army for architecture-centric practices.25 One study of 12 major systems indicated suc-
cessful use of architecture practices, in particular architecture evaluation, to increase understanding of 
system requirements, design decisions, and risks.26 On average, 25 significant risks are found during a 
software architecture evaluation. For example, a recent use of the ATAM coupled with an Architecture 
Analysis and Design Language (AADL)27 uncovered previously undiagnosed design flaws in Apache’s 
new runtime system.28

Although it is difficult to place a quantitative value on early-detected technical risks, in a study 
performed by the National Defense Industrial Association (NDIA) in 2006-2007, which surveyed 64 
programs and projects that had defense contractors, 46 percent of the projects that had higher product 
(software) architecture capability delivered the best project performance. In comparison, only 11 percent 
of the projects that had the least architecture capability delivered the best project performance.29 This 
study concluded that the early phases of systems engineering, which include software architecture 
development, have the most impact. 

When an architecture-driven approach is taken to establish a software product line, the quantitative 
impact is well documented. At this juncture, there are both government and defense industry examples 
including Army Training Support Center (ATSC); Advanced Multiplex Test System (AMTS); Army’s 
Common Avionics Architecture System (CAAS) Product Line;30 Textron Overwatch Intelligence Center 
Software Product Line;31 the Live, Virtual, Constructive Integrating Architecture (LVCIA) product lines 

24  “Software Architecture and Tradeoff Analysis Method,” available online at http://www.sei.cmu.edu/architecture/consulting/
systematam/index.cfm. Last accessed February 20, 2010.

25  Mark Kasunic, 2004, Army Strategic Software Improvement Program (ASSIP) Survey of Army Acquisition Managers, Technical Report, 
CMU/SEI-2004-TR-003, Pittsburgh, PA: Carnegie Mellon University/SEI. Available online at http://www.sei.cmu.edu/library/
abstracts/reports/04tr003.cfm. Last accessed August 20, 2010.

26  Robert Nord, John K. Bergey, Stephen Blanchette, Jr., and Mark H. Klein, April 2009, Impact of Army Evaluations, Pittsburgh, 
PA: Carnegie Mellon University. Available online at http://www.sei.cmu.edu/library/abstracts/reports/09sr007.cfm. Last ac-
cessed August 20, 2010.

27  “Architecture Analysis and Design Language,” available online at http://www.sei.cmu.edu/dependability/tools/aadl/
index.cfm. Last accessed August 20, 2010.

28  Peter H. Feiler and Dionisio de Niz, 2008, ASSIP Study of Real-Time Safety-Critical Embedded Software-Intensive System, Engineer-
ing Practices, Special Report, CMU/SEI-2008-SR-001, Pittsburgh, PA: Carnegie Mellon University/SEI. Available online at http://
www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA480129. Last accessed August 20, 2010.

29  Joseph P. Elm, Dennis Goldenson, Khaled El Emam, Nichole Donitelli, Angelica Neisa, and NDIA SE Effectiveness Com-
mittee, 2008, Survey of Systems Engineering Effectiveness— Initial Results, A, Special Report, CMU/SEI-2008-SR-034, Pittsburgh, PA: 
Carnegie Mellon University/SEI. Available online at http://www.sei.cmu.edu/library/abstracts/reports/08sr034.cfm. Last ac-
cessed August 20, 2010. 

30  Paul C. Clements and John K. Bergey, 2005, The U.S. Army’s Common Avionics Architecture System (CAAS) Product Line: A Case 
Study, Technical Report, CMU/SEI-2005-TR-019, Pittsburgh, PA: Carnegie Mellon University/SEI. Available online at http://www.
sei.cmu.edu/library/abstracts/reports/05tr019.cfm. Last accessed August 20, 2010.

31  Paul Jensen, 2009, “Experiences with Software Product Line Development,” CrossTalk 22(1):11-14.
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at Army PEO/STRI; and BAE’s Diamond software product line.32 As the successful case studies indicate, 
the government benefits through reduced engineering risk, reduced development and maintenance 
costs, decreased time to field, increased system agility, and improved system quality. The development 
of new ecosystems centered around the derived architectures also fuels the competitiveness of U.S. 
defense software industries.

There is the possibility that the focal point for such cross-program leverage could be through the 
PEO structure. But the committee perceives that the necessary authority and budget flexibility do not 
exist. Nonetheless, occasionally PEOs are able to accomplish such leverage.

Supporting Technology and Research Needs

A number of tools are emerging or maturing that can assist in assessing potential architectural design 
decisions. One of the most fundamental is the tradeoff analysis of diverse quality attributes in require-
ments with architectural models. An example of a systematized process for conducting this tradeoff 
analysis, noted above, is ATAM.33 Another example is the Google File System (GFS) and the tradeoffs 
in its design among scale, cost, and reliability.34 

In addition to this and similar process-based approaches, there are a number of significant technical 
enablers of architectural design. Examples of these include:

•	 Systems instrumentation and profiling. Techniques to collect data from running systems can give 
very significant insights into the behavior and structure of the system, and provide inputs for recon-
structing the architecture “as-implemented.” A principal feature of modern adaptive and self-healing 
architectures (sometimes called “autonomic systems”) is a pervasive approach to instrumentation within 
a system, including at enterprise scale. The resulting instrumentation data can be used in real-time to 
support monitoring for security, dynamic balancing of resource usage, and reassignment of tasks in the 
event of local errors and failures within a large system. Additionally, the data can be used forensically 
to diagnose performance, reliability, and security issues. Diverse techniques can be used to analyze the 
data in real time, in near-real time, and forensically. These techniques range from simple rule-based 
pattern matching to machine-learning technologies and data-mining techniques. The multi-purpose 
nature of instrumentation data has the added benefit of facilitating a “return on investment (ROI) case” 
for inserting the instrumentation and support for storage and analysis of the resulting database.

•	 Interface specification models and tools. The specification and enforcement of protocols of interaction 
among heterogeneous software components include not only language-support “API” specifications, 
but also many additional constraints or “rules of the road” regarding protocols for interaction, precondi-
tions on inputs, state constraints on objects, roles for threads, and so on. As we improve our ability to 
specify these constraints more completely, we become better able to separate the processes of developing 
separate components and assuring their compatibility. On the other hand, modern framework APIs are 
much more complex than the simpler library application programming interfaces (APIs) and protocol 
definitions of earlier systems. These are pervasive in web services, GUI development, AJAX rich clients, 
enterprise resource planning (ERP) systems, mobile frameworks, and many other areas. The advance 

32  John K. Bergey, Sholom Cohen, Patrick Donohoe, Matthew J. Fisher, Lawrence G. Jones, and Reed Little, 2009, Software Product 
Lines: Report of the 2009 U.S. Army Software Product Line Workshop, Technical Report, CMU/SEI-2009-TR-012 Pittsburgh, PA: Carnegie 
Mellon University/SEI. Available at http://www.sei.cmu.edu/reports/09tr012.pdf. Last accessed August 20, 2010.

33  Rick Kazman, Mark H. Klein, and Paul C. Clements, 2000, ATAM: Method for Architecture Evaluation, Technical Report, CMU/
SEI-2000-TR-004, Pittsburgh, PA: Carnegie Mellon University/SEI. Available at http://www.sei.cmu.edu/library/abstracts/
reports/00tr004.cfm. Last accessed August 20, 2010.

34  For visualization of the GFS architecture and more discussion see Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, 
2003, “The Google File System,” ACM SIGOPS Operating Systems 37(5):29-43. Available online at http://labs.google.com/papers/
gfs-sosp2003.pdf. Last accessed August 20, 2010.
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of the underlying software technology both increases this complexity (as the power of frameworks 
increases) and also increases our ability to handle it using interface specification techniques. 

•	 Change impact analysis. Artifacts such as modularity analyses and dependency matrices can be used 
to identify interdependencies among design decisions relating to separate components of a system.35 
When there are design decisions that are expected to change over time, architectural structures can be 
developed to “contain” or encapsulate those particular design decisions in an implementation such 
that anticipated subsequent changes influence relatively few other components. Techniques related to 
dependency matrices are used to assess interdependencies and, based on models of potential changes to 
design decisions, assess the extent of impact of potential changes. When expectations regarding change 
rates are known early in the process, architectures can be structured to risks associated with change 
and to localize the cost impact of subsequent changes. Looking down the road, a combination of change 
impact analysis and interfaces modeling can facilitate a more incremental approach to verification of 
new changes. 

•	 Architectural suitability measures. In addition to considerations of Conway’s Law, which observes 
the relationship between system structure and organizational/sourcing structure in large systems, 
there are also internal measures of quality for architectural designs. The most significant measures are 
(1) coupling among components, (2) cohesion within components, and (3) correspondence of changeability 
in requirements elements with encapsulation in architectural elements. The exact character of the mea-
sures depends highly on the specific nature of architectural models and code manifestations selected by 
a project. Nonetheless, these overall measures can be significant indicators of the success of an architect 
in achieving modularity goals.

•	 Cross-cutting analyses. Mechanisms such as architectural specification techniques, code-quality 
specification fragments, compile-time “pragmas,” and other declarations can be used to check that 
dependencies disallowed in the architecture are not added to the code. These techniques can enable 
developers and architects to monitor the consistency of an evolving code base with architectural intent 
(which may also be evolving, albeit at a slower pace). There are particular families of techniques, such as 
aspect-oriented technologies, that, roughly speaking, facilitate better linkages and traceability between 
models and code. Although there are many potential perspectives on the code base for a software system, 
certain cross-cutting considerations, although completely precise and evident in models, cannot readily 
be made evident in code in a way that supports monitoring and analysis. Aspect-oriented and related 
technologies can provide a means to accomplish this for many kinds of models. 

•	 Assisted code generation. Tools that support model-driven engineering approaches can be used to 
assist developers in deriving implementations from models. In some cases, source code is generated 
directly from high-level problem-focused specifications. In other cases, code templates and frameworks 
are used, which can be filled dynamically or at load time. This concept of domain-specific languages 
(DSLs) is directly analogous to the generation of intermediate or machine code by compilers (e.g., the 
Common Intermediate Language and associated infrastructure in Microsoft’s .NET, or the Java Virtual 
Machine bytecode language in the Java ecosystem from Oracle/Sun). In particular, if generated code is 
edited, then there is no longer an assurance (derived from trusting a compiler) of conformance with the 
high-level intent. Over the long haul, techniques for code generation are an intermediate step from rou-
tinized design toward configurable automation of capabilities and conventionalized interfaces in larger 
systems. Indeed, there is no significant operational difference between fully automatic code generation 
and configurable components—both lose traceability when results are directly modified, and both pose 
similar challenges to verification.

35  Carliss Baldwin and Kim Clark, 1999, Design Rules: The Power of Modularity Volume 1, Cambridge, MA: MIT Press. See also 
Carliss Baldwin and Kim Clark, 2007, “Modularity in the Design of Complex Engineering Systems,” pp. 175-205 in Complex Engi-
neered Systems: Science Meets Technology, Dan Braha, Ali A. Minai, and Yaneer Bar-Yam, eds. Berlin: Springer Berlin/Heidelberg.
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Many of these techniques are sufficiently well established that they can be adopted by conservative 
and prudent program managers. Unfortunately, the up-front costs of adapting and using such tech-
niques present an apparent budgetary risk that most program managers will not accept. In addition, in 
some cases these tools need to be matured and adapted for DoD systems, and that level of investment 
is beyond the capability of individual program managers. The DoD needs a systematic investment in 
identifying and maturing such tools and a means of encouraging their use.

However, the extremely rapid pace of technology development mandates constant attention to 
the advancement of these techniques to ensure that capabilities continue to be applicable, especially in 
response to the enhanced architectural needs of more complex future systems. In particular, the DoD 
needs to conduct the research necessary to understand the software architectural issues for DoD appli-
cations (Chapter 5). As previously observed, such research is unlikely to be supported at the program 
level. Also as previously mentioned, neither will it emerge from industry research efforts, which are 
primarily product driven. 

Architecture leadership is well established in commercial industry, as noted.36 It is also a specialty 
in aerospace firms. Contractual and business incentives may sometimes conflict with goals in advanc-
ing underlying technological enablers for architectural leadership, in advancing reuse, and in creating 
architecture-enabled mechanisms to support interlinking (interoperation across systems). In open-source 
projects, architectural innovation is less of a primary focus. The established successful open-source proj-
ects such as Linux, Apache, and Firefox have historically tended to build on precedented architectural 
concepts. 

Recommendation 3-1: Initiate a targeted research program to provide software architects with better 
tools and techniques for DoD systems.

Chapter 5 lays out a broad range of research that the DoD must conduct to understand the software 
architectural issues for DoD applications. But there are significant near-term opportunities for the DoD 
to invest in a systematic way to improve practice. Specifically, each PEO could be appropriated a budget 
to support: 

•	 Identification and analysis of existing software architectures and ecosystems for the application 
areas for which the PEO is responsible; 

•	 Evaluation of the common features of those architectures leading to the definition of a product-
line approach for those systems and of common architectural elements and data models across systems; 
and

•	 Development of improved architecture-based practices for future development.

36  Industry examples can be seen in Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash 
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels, 2007, “Dynamo: Amazon’s Highly 
Available Key-value Store,” 21st ACM SIGOPS Symposium on Operating Systems Principles, W.A. Stevenson, ed., ACM, pp. 205-220. 
Also see an example of interface specifications—WSDL (Web Service Description Language, available online at http://www.
w3.org/TR/wsdl and cutting analysis tools available at http://research.microsoft.com/apps/pubs/default.aspx?id=70226, and 
http://www.coverity.com/). Last accessed August 20, 2010.
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Strengthening DOD Capabilities With Respect to Architecture

The committee also notes that segments of the defense industry are capable of supporting software 
architecture-driven acquisition and product-line strategy.37,38,39,40 Despite a lack of financial incentives 
from the DoD, a number of defense industry contractors have developed a cadre of software architects, 
supported by training and certification processes. They state that they expect it will enable them to do 
a better job for programs they win and will better position them to win similar programs in the future. 
Also within the defense industry are corporate software product-line initiatives and successful product-
line efforts that support DoD acquisitions. This implies that segments of the defense industry are well 
positioned to support such a move on the part of the DoD. If the DoD decides to pursue a software 
architecture-driven acquisition strategy followed by a product-line strategy for systems with consistent 
base requirements, the segments of the defense industry are equipped to respond. Further, if the DoD 
backs up the move to a software architecture-driven acquisition strategy with training of software 
architects, and supports research to develop and improve related supporting technology, the DoD could 
assert leadership. (See Chapter 2 for a discussion of the current state of DoD software expertise and 
options for increasing expertise.)

The Office of the Assistant Secretary of the Army for Acquisition, Logistics, and Technology has 
recently issued a mandate that each program be staffed with a software architect.41 This is an important 
example of the kind of organic capability the DoD can and should develop. These architects will neither 
develop software architectures nor design or implement code. However, they will be trained in software 
architecture practices and how that relates to acquisition of software-reliant systems in the Army. The 
skill set they will need includes: understanding how to evaluate software architectures, having analy-
ses available to understand which architectural decisions will be appropriate for their requirements, 
employing tools to ensure that code conforms to the architecture, and building on experience to manage 
integrity of the software architecture during system evolution. An investment by the DoD in practices 
and research that will support this Army initiative can help it succeed.

There are significant challenges to achieving success with an architecture-led model. These derive 
from the difficulty of structuring incentives and allocating/sharing risks among the key stakeholders, 
including the development contractor, the DoD program management organization, the ultimate opera-
tional users, and managers of related systems that might be potentially interlinked. The committee 
identifies here several of the challenges. One of the early issues that must be addressed involves the 
question of how the architecture is defined, as well as who owns the architecture. The options that have 
been considered42 include the DoD separately contracting for the development and/or selection of the 
architecture and supporting tools through a competition, and then selecting the best bid. An issue with 
this approach is the sharing of risk and responsibility among the architecture developer, the prime, and 
the DoD regarding architectural decisions. This is a significant challenge when the DoD seeks to impose 
architectural constraints to enhance product-line opportunities, foster interoperation, and manage the 
development of ultra-scale systems where multiple prime contractors are involved. 

37  Lisa Brownsword, Paul C. Clements, 1996, A Case Study in Successful Product Line Development, Technical Report, , CMU/SEI-
96-TR-016, Pittsburgh, PA: Carnegie Mellon University. Available online at http://www.sei.cmu.edu/library/abstracts/reports/
96tr016.cfm. Last accessed August 20, 2010.

38  David C. Sharp, 1999, “Avionics Product Line Software Architecture Flow Policies,” Proceedings of the 18th IEEE/AIAA Digital 
Avionics Systems Conference (DASC), St. Louis, MO.

39  David Kaslow, 2000, “Architecture Based Design Applied to a Remote Sensing Satellite Planner,” INCOSE 2000, Minneapolis, 
MN. Available online at http://www.incose.org/delvalley/3_4_3_abd.pdf. Last accessed August 20, 2010.

40  Bert Schneider, Dale Anglin, Erik Baumgarten, John Dinh, and Mark Hall, 2008, “Raytheon Reference Architecture (RA): 
Enabling Timely & Affordable Customer Solutions,” 13th ICCRTS: C2 for Complex Endeavors. 

41  See memo from LTG N. R. Thompson dated May 26, 2009, and referenced in Bill Pollak, 2010, “Software Architects: Are You 
Losing Ground If You Are Not Credentialed?” Saturn Network Blog, February 12, 2010. Available online at http://saturnnetwork.
wordpress.com/tag/architecture-tradeoff-analysis-method/. Last accessed August 20, 2010.

42  Adapted from John K. Bergey and Wolfhart B. Goethert, 2001, Developing a Product Line Acquisitions Strategy for a DoD Orga-
nization: A Case Study, SEI Technical Report, Pittsburgh, PA: Carnegie Mellon University.
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One idea is for contractors, or bidders, to first contribute to the architecture in the early phases of 
an incremental development, and then help to implement it—with contract incentives for the imple-
mentation phase tied to the actual success of the architecture. This can be challenging in a competi-
tive environment where contractors may derive differential advantage from particular architectural 
commitments—and where those commitments may conflict with other goals, such as interlinking of 
systems.

Another challenge is to develop a cadre of architects who have suitable engineering experience—and 
have ongoing engineering engagement, to assure they maintain currency in ecosystems, programming 
technologies, tools, and architecture-related assurance issues. This is related, also, to the expertise issue 
elaborated in Chapter 2. Competent software architects are rare. They cannot be created through short-
term training programs but must be grown through extensive experience with associated ecosystems. 
Further, successful architects must be involved in design and implementation so that they do not pro-
mote obsolete technology and practice. They will exhibit creativity in those things that they specify to 
ensure a workable architecture emerges. Additionally, they will avoid over-specification where it will 
inhibit creative opportunities for the developers. 

The arm’s-length relationship of the DoD with its contractor-based development teams creates 
challenges in structuring contractual relationships that facilitate the free exchange of information and 
feedback between developers and other stakeholders—and in supporting the kind of adjustment and 
refactoring that is required to achieve early validation for crucial architectural commitments. 

It may be difficult for some stakeholders to ascertain which kinds of architectural commitments 
are most essential to success of a particular project. Simple certification of evolving industry-standard 
ecosystems and APIs, although important to an assurance process, does not necessarily constitute archi-
tectural commitment of the kind that is the principal subject of this chapter.

Finally, focus on any architecture should not be viewed as an invitation for the creation of compli-
ance-focused bureaucracy. Competent managers must, on an ongoing basis, assess the choice of archi-
tectural constraints for the intended benefits to quality attributes and functional capabilities. Although 
architects will use standard ecosystems, protocols, and interfaces in defining an architecture, these 
choices are not equivalent to selection of standards.

In developing a product-line strategy, the PEOs need to consider the fact that the know-how associ-
ated with the architecture, its constituent ecosystems, and the diverse related technical resources and 
tools are all critical factors in a selection. They must also factor into the strategy the cost of tool devel-
opment and training. Alternatively, they could provide financial incentives for contractors to develop 
those capabilities independently. 

Recommendation 3-2: This committee reiterates the past Defense Science Board recommendations 
that the DoD follow an architecture-driven acquisition strategy, and, where appropriate, use the 
software architecture as the basis for a product-line approach and for larger-scale systems potentially 
involving multiple lead contractors.

Recommendation 3-3: The DoD should enhance existing practices to afford better distinctions 
between precedented portions of systems and innovative portions of systems, wherein architectures 
are developed both to encapsulate the innovative elements and to afford maximum opportunity to 
build on experience and existing ecosystems for precedented elements. These overall architectures, 
and particularly the innovative elements, should be subject to early and continuous validation, 
especially in systems that have requirements for interoperation.

The foregoing discussion, findings, and recommendations apply to both precedented and innovative 
(unprecedented) DoD systems and subsystems. As the DoD considers development of larger systems, 
including systems of systems, where some of the capabilities are precedented and others are innova-
tive, the acquisition challenges become more difficult. In those cases, the development of software 
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architecture will be even more significant, in some cases requiring architectural innovation. Indeed, in 
many cases of large-scale interconnected systems (variously called ultra-scale systems, systems of sys-
tems, net-centric systems, etc.), architectural considerations may even be a driver of choices regarding 
system functionality. That is, once the “scope” of functional capability is identified, then architectural 
commitments may need to be contemplated before details are worked out regarding those functional 
capabilities. In this respect, quality attributes or “non-functional” requirements (reliability, scalability, 
security, performance, etc.) and anticipated interoperation requirements both dominate, because, from 
a technological perspective, their potential for fulfillment is most directly predicted by architectural 
decisions. Further, if the architecture effectively supports a defined “scope” of functional capabilities, 
then many of the details regarding the particular manifestations of those capabilities can be worked 
out later in the process—when the engineering (and potentially operational) uncertainties regarding the 
downstream impacts of particular possible choices are reduced.43 

Finding 3-5: In systems with innovative functional or quality requirements, benefit is derived from 
an early focus on the most essential architectural commitments and quality attributes, with deferred 
commitment to specifics of functional characteristics. This approach can reduce the overall uncer-
tainty of the engineering process and yield better outcomes. 

These more complex and interconnected systems consist of multiple components interacting, and 
include functionality that may cut across multiple traditional defense functional areas. Future Combat 
Systems (FCS) is one such example. This means that building on existing, proven architectures can reduce 
the amount of innovation required and risk sustained in a project of this sort. Because the power prom-
ised by these systems comes at a significant price in complexity (e.g., the multitude of sensors, weapons, 
and battle command centers), a greater focus is needed on engineering risk when planning the sequence 
of engineering commitments. In these cases, the biggest lever on engineering risk—and enabler of scale, 
interoperation, and other critical non-functional requirements—is very often architecture. Moreover, in 
many of these cases, the overall architecture is a composite of diverse precedented ecosystems structures 
combined with encapsulated innovative/unprecedented elements whose architecture, in the purely local 
context, may have associated design risks. In this manner, a massive global uncertainty is replaced by 
localized uncertainties, which, from a systems engineering perspective, means a consequent reduction 
in overall systems engineering risk. 

With prototyping and instrumentation—the software analogs of the modeling and simulation prac-
tices pervasive in the development of physical systems—the engineering risks can be discharged through 
early validation, thus reducing the overall project risk even for highly innovative projects. 

As noted above, architecture is very often the fulcrum of potential for evolution and complexity. 
For example, how can architectures be developed and validated to support the kind of local autonomy 
necessary for diverse kinds of vehicles to navigate effectively over mixed terrain? How can software 
and systems architectures be evolved, for example, as algorithms and machine-learning capabilities 
improve? Moreover, by specifying interfaces for which testing or measurement is possible, by defining 
reusable components, and by separating critical from non-critical parts of the system, architecture plays 
an essential role in localizing uncertainties regarding assurance and thus reducing overall risk related 
to assurance. 

An interesting case study of architecture and evolution in an environment with multiple competing 
organizations is the architecture of large-scale web systems. This has been a topic of intense interest 
to startup and established companies for 15 years. One of the key early architectural ideas related to 
servers was the use of scalable networks of PC workstations and “shared-nothing computation.” This 

43  Barry Boehm, Ricardo Valerdi, Eric Honour, 2008, “The ROI of Systems Engineering: Some Quantitative Results for Software-
Intensive Systems,” Systems Engineering 11(3):221-234.
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originated in academic research,44 and in turn was rapidly developed and proven in startup companies 
such as Inktomi, Google, and others. The academic research approach is quickly evolving into standard 
“best practice” supported by web development tools and web servers. 

Google took several big jumps beyond this architecture to address issues related to much larger 
scale and the need for new computational abstractions suited to this new category of high-performance 
data-intensive computations. It shared its ideas through an influential series of papers on the Google 
File System (GFS)45 and the MapReduce computational model.46 The MapReduce model, although seem-
ingly quite radical, builds on ideas from functional programming that have their heritage in the 1960s. 
The architecture of these systems was replicated and adapted by others including Amazon and Yahoo!. 
Indeed, Yahoo! and the Apache Software Foundation collaborated to host the open-source Hadoop 
system, now widely adopted for applications that go well beyond text analysis.47 Many of the infrastruc-
ture-level ideas also fed the development of cloud-computing architectures such as those supported by 
Amazon, Google, Microsoft, and others.48 The point of all this is that each player incrementally adapted 
an existing, mostly proven architecture into a new model, with the result that the end-state (the key 
computational abstractions and their delivery in modern distributed data centers) appears singularly 
revolutionary, despite the reality of its evolutionary development.

Recommendation 3-4: The DoD should learn from commercial experience and, in addition, sponsor 
diverse areas of technical research to help reduce the engineering risk in architecting systems that 
include unprecedented functional and quality attributes.

Some specific areas of research focus are given in the inventory of topics above, and these are fur-
ther elaborated in Chapter 5, which offers specific recommendations for addressing the complexity that 
the DoD will face. A theme that cuts across many of these topics is the idea of developing modeling and 
simulation tools suitable to informing architectural decisions, analogous to the modeling and simulation 
done for physical elements of many different kinds of DoD systems. This creates the possibility of a try-
before-buy approach to key architectural decisions, wherein architectural concepts are modeled using 
tools, and analysis and testing can be done to assess scalability, performance, robustness, and resiliency 
to failures and attacks. In other words, the techniques offer a kind of “early validation” whereby engi-
neering risks can be discharged earlier and with lower cost than if the uncertainties persisted until later 
implementation and test phases of development. By modeling and simulation, the committee means 
something broader than the current theory and practice of testing and analysis of software code, which 
focus on conformance of program behavior to specified behavior. The goal is to augment this with tests 
and analyses that provide information at the earliest possible stages of the process to support evaluation 
and validation of architecture concepts, interface and framework definitions, and other architectural 
elements. 

A second theme, also noted in the topic inventory, is to develop audit and instrumentation tools to 
provide early data once architectures are designed and initially populated. 

44  Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer, and Paul Gauthier, 1997, “Cluster-Based Scalable Network 
Services, Proceedings of SOSP ‘97, St. Malo, France, October 1997. Available online at http://www.cs.berkeley.edu/~brewer/
papers/TACC-sosp.pdf. Last accessed August 20, 2010.

45  For more information, see Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, 2003, “The Google File System,” ACM 
SIGOPS Operating Systems Review 37(5):29-43. Available online at http://portal.acm.org/citation.cfm?id=1165389.945450&coll= 
GUIDE&dl=GUIDE&CFID=90089376&CFTOKEN=82606234. Last accessed August 20, 2010.

46 For more information, see Jeffrey Dean and Sanjay Ghemawat, 2008, “MapReduce: Simplified Data Processing on Large 
Clusters,” Communications of the ACM 51(1):107-113.

47  For more information, see http://hadoop.apache.org/. Last accessed August 20, 2010.
48  Werner Vogels, 2007, “Enterprise Scale and Beyond,” presented at Meeting #2 Advancing Software-Intensive Systems Produc-

ibility, January 17-18, 2007, Washington, DC. A summary of briefers’ presentations and the workshop discussion can be found in 
NRC, 2007, Summary of a Workshop on Software Intensive Systems and Uncertainty at Scale, Washington, DC: National Academies 
Press. Available online at http://www.nap.edu/catalog.php?record_id=11936. Last accessed August 20, 2010. 
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A third theme, relating to the idea of precedent and architectural risk management, is to develop and 
analyze a family of precedented “scalable architectural patterns” that could provide a well-understood 
infrastructure of building blocks out of which ultra-large-scale architectures could be designed. This 
could facilitate the use of multiple suppliers at the architectural and component levels. Additionally, 
if tools are in place that can support more aggressive restructuring, then a more principled approach 
can be taken to architectural design that includes iterative development, currently very difficult at 
the architectural level. This could also enable constructive response even to relatively late-breaking 
news regarding the consequences of early architectural commitments. Some combination of all these 
approaches will likely be necessary. 
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4

Adopt a Strategic Approach to Software Assurance

software assurance and evidence

One of the great challenges for both defense and civilian systems is software quality assurance. Soft-
ware assurance encompasses reliability, security, robustness, safety, and other quality-related attributes. 
Diverse studies suggest that overall software assurance costs account for 30 to 50 percent of total project 
costs for most software projects.� Despite this cost, current approaches to software assurance, primarily 
testing and inspection, are inadequate to provide the levels of assurance required for many categories 
of both routine and critical systems.� 

In major defense systems, the assurance process is heavily complicated by the arm’s-length relation-
ship that exists between a contractor development team and government stakeholders. This relation-

�  In “Software Debugging, Testing, and Verification,” IBM Systems Journal (41)1, 2002, B. Hailpern and P. Santhanam say, “In a 
typical commercial development organization, the cost of providing this assurance via appropriate debugging, testing, and veri-
fication activities can easily range from 50 to 75 percent of the total development cost.” In Estimating Software Costs (McGraw-Hill, 
1998), Capers Jones provides a table relating percentage of defects removed to percentage of development effort devoted to testing, 
with data points that include 90 to 39 percent, 96 to 48 percent, and 99.9 to 58 percent. In Software Cost Estimation with COCOMO 
II (Prentice Hall, 2000), Barry W. Boehm, Chris Abts, A. Winsor Brown, Sunita Chulani, Bradford K. Clark, Ellis Horowitz, Ray 
Madachy, Donald Reifer, and Bert Steece indicate that the cost of test planning and running tests is typically 20 to 30 percent plus 
rework due to defects discovered. In Balancing Agility and Discipline (Addison-Wesley, 2004), Barry Boehm and Richard Turner 
provide an analysis of the COCOMO II Architecture and Risk Resolution scale factor, indicating that the increase in rework due 
to poor architecture and risk resolution is roughly 18 percent for typical 10-KSLOC (KSLOC stands for thousand software lines of 
code) projects and roughly 91 percent for typical 10,000-KSLOC projects. (COCOMO II, or constructive cost model II, is a software 
cost, effort, and schedule estimation model.) This analysis suggests that improvements are needed in up-front areas as well as in 
testing and supporting the importance of architecture research, especially for ultra-large systems. 

�  The challenges relating to assurance were highlighted by several briefers to the committee. In addition, this issue is a core con-
cern in the Defense Science Board (DSB), September 2007, Report of the Defense Science Board Task Force on Mission Impact of Foreign 
Influence on DoD Software, Washington, DC: Office of the Undersecretary of Defense for Acquisition, Technology, and Logistics, 
at pp. 30-38. Available online at http://stinet.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA473661. 
The 2007 NRC report Software for Dependable Systems also addressed the issue of testing and noted, “Testing … will not in general 
suffice, because even the largest test suites typically used will not exercise enough paths to provide evidence that the software 
is correct nor will it have sufficient statistical significance for the levels of confidence usually desired” (p. 13). See NRC, Daniel 
Jackson, Martyn Thomas, and Lynette I. Millett, eds. 2007, Software for Dependable Systems, National Academies Press, Washington, 
DC. Available online at http://www.nap.edu/catalog.php?record_id=11923. Last accessed August 20, 2010.
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ship—in which sometimes even minor changes to up-front commitments may necessitate amendments 
to contracts and adjustments in costing—can create barriers to the effective and timely sharing of infor-
mation that can assist the customer in efficiently reaching accurate assurance judgments. Additionally, 
it can be difficult to create incentives for the appropriate use of preventive measures such as those 
referenced in this chapter.

In this chapter the committee first considers the trends related to the challenges of software assur-
ance. It then offers a concise conceptual framework for certain software assurance issues. Finally, it 
identifies significant technical opportunities and potential future challenges to improving our ability to 
provide assurance. (Some of these are elaborated in Chapter 5.)

Failures in software assurance can be of particularly high consequence for defense systems because 
of their roles in protecting human lives, in warfighting, in safeguarding national assets, and in other piv-
otal roles. The probability of failure can also be high, due to the frequent combination of scale, innovative 
character, and diversity of sourcing in defense systems. Unless exceptional attention is devoted to assur-
ance, a high level of risk derives from this combination of high consequence and high likelihood. 

Assurance considerations also relate to progress tracking, as discussed in Chapter 2—assessment 
of readiness for operational evaluation and release is based not just on progress in building a system, 
but also on progress in achieving developmental assurance. Additionally, the technologies and practices 
used to achieve assurance may also contribute useful metrics to guide process decision making. 

Assurance Is a Judgment

Software assurance is a human judgment of fitness for use. In practice, assurance judgments are 
based on application of a broad range of techniques that include both preventive and evaluative methods 
and that are applied throughout a software engineering process. Indeed, for modern systems, and not 
just critical systems, the design of a software process is driven not only by issues related to engineer-
ing risk and uncertainty, but also, in a fundamental way, by quality considerations.� These, in turn, are 
driven by systems risks—hazards—as described in Chapter 2 and also in Box 4.1 (cybersecurity).

An important reality of defense software assurance is the need to achieve safety—that is, in war, 
there are individual engagements where lives are at stake and where software is the deciding factor in 
the outcome. In many life and death situations, optimum performance may not be the proper overrid-
ing assurance criterion, but rather the “minimization of maximum regret.” This is exacerbated by the 
fact that, while a full-scale operational test of many capabilities may not be feasible, assurance must 
nonetheless be achieved. This applies, for example, to certain systems that support strategic defense and 
disaster mitigation. The committee notes, however, that there are great benefits in architecting systems 
and structuring requirements such that many capabilities of systems that would otherwise be rarely 
used only for “emergencies” are also used in an ongoing mode for more routine operations. This cre-
ates benefits from operational feedback and user familiarity. It also permits iterative development and 
deployment, such as is familiar to users of many evolving commercial online services.

Another reality of defense software that affects assurance is that it is developed by contractors work-
ing at arm’s length from the DoD. This means, for example, that the information sharing necessary to 
assessing and achieving assurance must be negotiated explicitly.

There are many well-publicized examples of major defense systems exhibiting operational failures 
of various kinds that are, evidently, consequences of inadequate assurance practices. A recent example 
of this type of top-level systems engineering issue was the failure of an F-22 flight management system 
when it was flown across the international dateline for the first time en route from Hawaii to Japan. In a 
CNN interview, Maj. Gen. Don Sheppard (ret.) said, “At the international date line, whoops, all systems 
dumped and when I say all systems, I mean all systems, their navigation, part of their communications, 

�  Michael Howard and Steve Lipner, 2006, The Security Development Lifecycle, Redmond, WA: Microsoft Press. See also  
Box 2.3.
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BOX 4.1 
Assurance and Cybersecurity—A Brief Consideration

Cybersecurity

Although it is not a principal focus of this report, cybersecurity is an unavoidable and critical dimension 
of software assurance. It is rarely possible to contemplate software assurance without also giving major at-
tention to security considerations. This is particularly challenging because security, like assurance, must be 
addressed at every phase of development and the software lifecycle overall.� 

A system can only be assured if it is well understood. The main text elaborates the concept of a chain of 
evidence, which documents this understanding as traceability from intentions to outcomes, including func-
tional requirements, quality attributes, and architectural constraints. Security adds the additional dimension 
of threats and attacks. For software, these can occur not only during operations, but also at every stage of the 
lifecycle, from development through to ongoing evolution and update during operations. The most crude 
categorization of threats yields three different avenues of attack: (1) external attackers—adversaries gaining 
access from points external to the system, typically via network connections, (2) operational insiders—ad-
versaries gaining access to a DoD software system through inappropriate privileging, compromised physical 
access, or compromised personnel, and (3) engineering insiders—adversaries influencing or participating 
in the engineering process at some point in the supply chain for an overall system. Attacks can have dif-
ferent goals, typically characterized as “CIA”—breaching Confidentiality of data, damaging the Integrity of 
data, and disrupting Availability of a computational service. The analysis of possible threats and attacks is 
a key element of secure software development. This analysis is strongly analogous to hazard analysis (as 
discussed elsewhere in this report), and it can lead to a host of security considerations to address in the 
development of systems, for example, relating to identity and attribution, network situational awareness, 
secure mobility, policy models and usability, forensics, etc. From the standpoint of secure software develop-
ment, the committee highlights two principal policy considerations, chosen because they are most likely 
to significantly influence both software architecture and development practice. The first of these relates to 
separation—minimizing and managing the coupling among components in a way that reduces the overall 
extent of those most sensitive components in a system that require the highest levels of assurance as well 
as the “attack surface” of those components with respect to the various avenues of attack noted above. 
The second relates to configuration integrity—the assurance that any deviations or dynamic alterations to an 
operational system are consistent with architectural intent.

Separation

The first example of a security-related chain is the separation chain. Construction of this chain of 
evidence entails documenting relationships among critical shared resources and the software and system 
components that should, or should not, have access to or otherwise influence those resources.� This chain 
documents the means by which access to resources is provided—or denied—to the components of a soft-
ware system that need to rely on those resources. A less trusted component, for example, may be excluded 
by policy from observing, changing, or influencing access by others to a critical resource such as a private 
key. 

The ability to construct chains of this kind is determined by architectural decisions and implementa-
tion practices. Concepts from security architecture such as process separation, isolation, encapsulation, 
and secure communication architecture determine whether this kind of chain can be feasibly constructed, 
with minimal exposure of the most sensitive portions of a system. For example, modern commercial PC 
operating systems are designed to achieve security goals while offering tremendous generality and power 

 1 Steve Lipner and Michael Howard, 2006, The Security Development Lifecycle, Redmond, WA: Microsoft Press. See 
also Gary McGraw, 2006, Software Security: Building Security In, Boston: Addison-Wesley.

 2 This documentation should be formal wherever possible, such as might be derived from code analysis, verifica-
tion, and modeling.

in their underlying services and resource-management capabilities. Operating systems more focused on 
media delivery may offer less generality and flexibility, but may do better in providing assurance relating to 
security because architectures are designed to more tightly regulate access to resources. 

Research advances can expand architectural options for which assurance of this kind can be achieved. 
This is influenced both through enhancement of architectural sophistication and through the ability to 
model and assure policies. 

Configuration

The second example of a security-related chain is the configuration chain. This chain documents the 
configuration integrity that is established when a system starts up and that is sustained through operations. 
The chain, in this case, typically links a known hardware configuration with the full complexity of an overall 
running system, including software code, firmware, and hardware operating within that configuration. Loss 
of integrity can occur, for example, when malware arrives over a network and embeds itself within a system. 
It should be clear that this chain (like the other chain) is significant not only for networked systems but also 
for any system with a diverse supply chain, due to the differing trust levels conferred on system components. 
The assurance enabled by this chain is that the assumptions that underlie the construction of other kinds of 
chains (and the architectural, functional, and other decisions that enable that construction) are reflected in 
the reality of the code that executes—and so the conclusions can be trusted. Put simply, this chain assures 
an absence of tampering. This has proven to be a singular challenge for commercial operating systems, as 
evidenced by the difficulty of detecting and eradicating rootkits, for example.

Documentation of this second kind of chain is complicated by a diversity of factors. One is the dyna-
mism of modern architectures, which afford the flexibility and convenience of dynamically loading software 
components such as device drivers and libraries. Another is the layered and modular structure that is the 
usual result of considerations related to development of the second kind of chain. A third factor is assuring 
configuration integrity of the hardware itself. Including hardware in the chain can be much more challeng-
ing than the analogous process for software, because of the added need to “reverse engineer” physical 
hardware.� A fourth factor is derived from the “bootstrap” process through which initial software configura-
tions are loaded onto bare hardware, generally layer by layer. This affords the opportunity of an iterative and 
ongoing process of loading and integrity checking, such as has been envisioned in the development of the 
TPM chips that are present on the motherboards of most PCs and game platforms.� In this model, the intent 
is to assure integrity through fingerprinting and monitoring the integrity of software components as they 
are loaded and configured both through the bootstrap process and during operations. These four factors, 
combined with a highly competitive environment that discourages compromise on systems functionality 
and performance, have proven highly challenging for DoD in adopting commercial off-the-shelf operating 
systems, for example.�

A Note on Secrecy

Security-related faults lead to hazards just when attackers are able to exploit those faults to create er-
rors and failures. It may be tempting, therefore, to think that full secrecy of the software code base would 
preclude such possibilities. For defense systems there are many good reasons for secrecy, but, from the 
perspective of exploitation of vulnerabilities, over-reliance on secrecy (“security through obscurity”) is a 

3 DSB, February 2005, Report of the Defense Science Board Task Force on High Performance Microchip Supply, Washing-
ton, DC: Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics, Available online at http://
stinet.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA473661. Last accessed August 20, 2010.

 4 See http://www.trustedcomputinggroup.org/. 
 5 DSB, September 2007, Report of the Defense Science Board Task Force on Mission Impact of Foreign Influence on DoD 

Software, Washington, DC: Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics. Avail-
able online at http://stinet.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA473661. Last accessed 
August 20, 2010.
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BOX 4.1 
Assurance and Cybersecurity—A Brief Consideration

Cybersecurity

Although it is not a principal focus of this report, cybersecurity is an unavoidable and critical dimension 
of software assurance. It is rarely possible to contemplate software assurance without also giving major at-
tention to security considerations. This is particularly challenging because security, like assurance, must be 
addressed at every phase of development and the software lifecycle overall.� 

A system can only be assured if it is well understood. The main text elaborates the concept of a chain of 
evidence, which documents this understanding as traceability from intentions to outcomes, including func-
tional requirements, quality attributes, and architectural constraints. Security adds the additional dimension 
of threats and attacks. For software, these can occur not only during operations, but also at every stage of the 
lifecycle, from development through to ongoing evolution and update during operations. The most crude 
categorization of threats yields three different avenues of attack: (1) external attackers—adversaries gaining 
access from points external to the system, typically via network connections, (2) operational insiders—ad-
versaries gaining access to a DoD software system through inappropriate privileging, compromised physical 
access, or compromised personnel, and (3) engineering insiders—adversaries influencing or participating 
in the engineering process at some point in the supply chain for an overall system. Attacks can have dif-
ferent goals, typically characterized as “CIA”—breaching Confidentiality of data, damaging the Integrity of 
data, and disrupting Availability of a computational service. The analysis of possible threats and attacks is 
a key element of secure software development. This analysis is strongly analogous to hazard analysis (as 
discussed elsewhere in this report), and it can lead to a host of security considerations to address in the 
development of systems, for example, relating to identity and attribution, network situational awareness, 
secure mobility, policy models and usability, forensics, etc. From the standpoint of secure software develop-
ment, the committee highlights two principal policy considerations, chosen because they are most likely 
to significantly influence both software architecture and development practice. The first of these relates to 
separation—minimizing and managing the coupling among components in a way that reduces the overall 
extent of those most sensitive components in a system that require the highest levels of assurance as well 
as the “attack surface” of those components with respect to the various avenues of attack noted above. 
The second relates to configuration integrity—the assurance that any deviations or dynamic alterations to an 
operational system are consistent with architectural intent.

Separation

The first example of a security-related chain is the separation chain. Construction of this chain of 
evidence entails documenting relationships among critical shared resources and the software and system 
components that should, or should not, have access to or otherwise influence those resources.� This chain 
documents the means by which access to resources is provided—or denied—to the components of a soft-
ware system that need to rely on those resources. A less trusted component, for example, may be excluded 
by policy from observing, changing, or influencing access by others to a critical resource such as a private 
key. 

The ability to construct chains of this kind is determined by architectural decisions and implementa-
tion practices. Concepts from security architecture such as process separation, isolation, encapsulation, 
and secure communication architecture determine whether this kind of chain can be feasibly constructed, 
with minimal exposure of the most sensitive portions of a system. For example, modern commercial PC 
operating systems are designed to achieve security goals while offering tremendous generality and power 

 1 Steve Lipner and Michael Howard, 2006, The Security Development Lifecycle, Redmond, WA: Microsoft Press. See 
also Gary McGraw, 2006, Software Security: Building Security In, Boston: Addison-Wesley.

 2 This documentation should be formal wherever possible, such as might be derived from code analysis, verifica-
tion, and modeling.

in their underlying services and resource-management capabilities. Operating systems more focused on 
media delivery may offer less generality and flexibility, but may do better in providing assurance relating to 
security because architectures are designed to more tightly regulate access to resources. 

Research advances can expand architectural options for which assurance of this kind can be achieved. 
This is influenced both through enhancement of architectural sophistication and through the ability to 
model and assure policies. 

Configuration

The second example of a security-related chain is the configuration chain. This chain documents the 
configuration integrity that is established when a system starts up and that is sustained through operations. 
The chain, in this case, typically links a known hardware configuration with the full complexity of an overall 
running system, including software code, firmware, and hardware operating within that configuration. Loss 
of integrity can occur, for example, when malware arrives over a network and embeds itself within a system. 
It should be clear that this chain (like the other chain) is significant not only for networked systems but also 
for any system with a diverse supply chain, due to the differing trust levels conferred on system components. 
The assurance enabled by this chain is that the assumptions that underlie the construction of other kinds of 
chains (and the architectural, functional, and other decisions that enable that construction) are reflected in 
the reality of the code that executes—and so the conclusions can be trusted. Put simply, this chain assures 
an absence of tampering. This has proven to be a singular challenge for commercial operating systems, as 
evidenced by the difficulty of detecting and eradicating rootkits, for example.

Documentation of this second kind of chain is complicated by a diversity of factors. One is the dyna-
mism of modern architectures, which afford the flexibility and convenience of dynamically loading software 
components such as device drivers and libraries. Another is the layered and modular structure that is the 
usual result of considerations related to development of the second kind of chain. A third factor is assuring 
configuration integrity of the hardware itself. Including hardware in the chain can be much more challeng-
ing than the analogous process for software, because of the added need to “reverse engineer” physical 
hardware.� A fourth factor is derived from the “bootstrap” process through which initial software configura-
tions are loaded onto bare hardware, generally layer by layer. This affords the opportunity of an iterative and 
ongoing process of loading and integrity checking, such as has been envisioned in the development of the 
TPM chips that are present on the motherboards of most PCs and game platforms.� In this model, the intent 
is to assure integrity through fingerprinting and monitoring the integrity of software components as they 
are loaded and configured both through the bootstrap process and during operations. These four factors, 
combined with a highly competitive environment that discourages compromise on systems functionality 
and performance, have proven highly challenging for DoD in adopting commercial off-the-shelf operating 
systems, for example.�

A Note on Secrecy

Security-related faults lead to hazards just when attackers are able to exploit those faults to create er-
rors and failures. It may be tempting, therefore, to think that full secrecy of the software code base would 
preclude such possibilities. For defense systems there are many good reasons for secrecy, but, from the 
perspective of exploitation of vulnerabilities, over-reliance on secrecy (“security through obscurity”) is a 

3 DSB, February 2005, Report of the Defense Science Board Task Force on High Performance Microchip Supply, Washing-
ton, DC: Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics, Available online at http://
stinet.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA473661. Last accessed August 20, 2010.

 4 See http://www.trustedcomputinggroup.org/. 
 5 DSB, September 2007, Report of the Defense Science Board Task Force on Mission Impact of Foreign Influence on DoD 

Software, Washington, DC: Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics. Avail-
able online at http://stinet.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA473661. Last accessed 
August 20, 2010.
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dangerous approach. There are two reasons. First, faults can very often be detected through sophisti-
cated “black-box” methods, in which attackers probe and poke a system based on hypotheses regarding 
its likely structure and function—these methods are analogous to those used in software development 
for operational and systems-level testing. Second, if secrecy enables developers to become complacent 
about fundamentals, such as appropriate security architectures (see below), then the overall risk can 
increase dramatically. A minor coding flaw may expose a vulnerability, but with good development 
and assurance practice that flaw can be readily eliminated either directly through analysis or indirectly 
through multi-layer defense. An architectural flaw, on the other hand, may be much more difficult 
or even impossible to mitigate without taking the entire system offline and undertaking significant 
reengineering.

Opaque Code

As noted in the main text, modern software systems often consist of components drawn from di-
verse sources. The gradients of trust among components are often complicated by the fact that many 
components are relatively opaque compared with others—for example, only executable code is avail-
able. There are several reasons for this opacity in DoD systems, many of which are driven by commercial 
considerations related to the protection of intellectual property manifest in source code and design 
documentation. These considerations may apply both to commercial vendors and to subcontractors 
who may be potential competitors with their prime contractor on other projects. Indeed, some devel-
opment organizations may not want to share source code and design information with the government 
because they are concerned about potential public release or by the possibility of similar requests for 
access from other governments who they may seek as customers. This is a particular challenge for com-
mercial vendors, who typically conduct business globally and so may face similar requirements from 
other governments. This risk of exposure may even deter some firms from conducting business in the 
U.S. government supply chain.

This issue motivates technologies related to sandboxing and isolation, such as those used in web 
browsers for JavaScript and (as a research goal) technologies for “evidence-carrying code,” where evi-
dence of security or safety can be provided in a way that may nonetheless cloak vendor trade secrets.

These considerations notwithstanding, a principal consideration in assurance is the reduction in 
the extent of code that, in the end, remains opaque to DoD acceptance evaluators. One mechanism, 
embodied in the Common Criteria model, is the use of mutually trusted third parties to support assur-
ance activities. A key issue is how that evaluation can be done such that two goals are addressed: (1) 
There is minimal added cost and delay, and (2) Evidence can be produced that protects the interests 
of the developers and that manifests the necessary links in the various required chains of evidence. 
The first of these goals could be supported, for example, through the involvement of evaluation teams 
throughout development. But it could also be addressed through a consistent practice of “evidence 
production,” whereby developers create links in the necessary chains of evidence that can support a 
more efficient third-party or government evaluation. 

One of the challenges in evidence production is achieving a return-on-investment model for evi-
dence production that has the characteristic of “early gratification” for development teams. This was 
considered unachievable for many years. But there is now evidence in modern team practice, with 
intensive use of tools for team coordination, defect/issue tracking, and software assurance (unit testing 
and analysis), that costly after-the-fact practices are giving way to ongoing evidence production, in the 
same spirit as test-driven development. The second of these goals suggests a number of challenging 
research problems related to the production of evidence that supports assurance but may also cloak 
proprietary algorithms from other development teams working on the same system. Both goals also 
suggest a research challenge related to enhancing the scope of specification of APIs to facilitate dem-
onstration of compliance with API rules of the road. This is significant from an architectural standpoint, 
because it enables development teams to work more independently of each other, given the added 
certainty regarding API-mediated interactions.

BOX 4.1  Continued
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their fuel systems. They were—they could have been in real trouble. They were with their tankers. . . . 
The [F-22 crews] tried to reset their systems, couldn’t get them reset. The tankers brought them back to 
Hawaii. This could have been real serious. It certainly could have been real serious if the weather had 
been bad. It turned out OK. It was fixed in 48 hours. It was a computer glitch in the millions of lines of 
code, somebody made an error in a couple lines of the code and everything goes.” The contact with the 
tankers was visual: “Had they gotten separated from their tankers or had the weather been bad, they 
had no attitude reference. They had no communications or navigation. They would have turned around 
and probably could have found the Hawaiian Islands. But if the weather had been bad on approach, 
there could have been real trouble.”�

There Are Diverse Quality Attributes and Methods

Software assurance encompasses a wide range of quality attributes. For defense systems, there is 
particular emphasis on addressing hazards related to security (primarily confidentiality, integrity, and 
access of service, see Box 4.1), availability and responsiveness (up time and speed of response), safety 
(life and property), adherence to policy (rules of engagement), and diverse other attributes. There is a 
very broad range of kinds of failures, errors, and faults that can lead to such hazards (Box 4.2). Soft-
ware assurance practices must therefore encompass a correspondingly broad range of techniques and 
practices.

There is a false perception that assurance can be achieved entirely through acceptance evaluation 
such as that achieved through operational and systems test. Systems test is certainly a necessary step 
in assuring functional properties and many performance properties. But it is by no means sufficient. 
Assurance cannot be readily achieved from testing for many kinds of failures related to security, inter-
mittent failures due to non-determinism and concurrency, readiness for likely future evolution and 
interoperation requirements, readiness for infrastructure upgrades, highly complex state space, and 
other kinds of failures.

A comprehensive assurance practice requires attention to quality issues throughout the develop-
ment and operations lifecycle, at virtually every stage of the process and at all links in the supply chain 
supporting the overall system. The latter point is a consequence of the observation above regarding the 
fallacy of relying entirely on acceptance evaluation and operational testing. Although the DoD relies 
extensively on vendor software and undertakes considerable testing of that software, it also implicitly 
relies on a relationship founded in trust (rather than “verify”) to assure many of the quality attributes 
(listed above) that are not effectively supported through this kind of testing. This issue is explored at 
length in a report by the Defense Science Board on foreign software in defense systems.�

It is now increasingly well understood by software engineers and managers that quality, including 
security, is not “tested in,” but rather must be “built in.”� But there are great challenges to succeeding 
in both “building in quality,” using preventive methods, and assuring that it is there, using evaluative 
methods. The nature of the challenge is determined by a combination of factors, including the potential 
operational hazards, the system requirements, infrastructure choices, and many other factors. 

�  “F-22 Squadron Shot Down by the International Date Line,” Defense Industry Daily, March 1, 2007. Available online at http://
www.defenseindustrydaily.com/f22-squadron-shot-down-by-the-international-date-line-03087/. August 10, 2010. There are also 
numerous public accounts of software failures of diverse kinds and consequences, such as those cited in the Forum on Risks to 
the Public in Computers and Related Systems, available online at http://www.risks.org. 

�  Defense Science Board (DSB), 2007, Report of the Defense Science Board Task Force on Mission Impact of Foreign Influence on DoD 
Software, Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics. Available online at http://stinet.
dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA473661. Last accessed August 20, 2010.

�  This is not a comment about test-driven development, which is an excellent way to transform the valuable evaluative practice 
of testing into a more valuable preventive practice of test-driven development—building test cases and code simultaneously or 
even writing test cases before code is written. Note here that “test” should be broadly construed, encompassing quality tech-
niques such as inspection, modeling, and analysis. There are benefits to writing code from the outset that more readily support, 
for example, modeling, sound analysis, and structured inspection.
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BOX 4.2 
Faults, Errors, Failures, and Hazards

A failure is a manifestation of a system that is inconsistent with its functional or quality intent—it fails to 
perform to specification. A hazard is a consequence to an organization or its mission that is the result of a 
system manifesting a failure. That is, if a system has been placed in a critical role and a failure occurs, then 
the hazard is the consequence to that role. For example, if an aircraft navigation system delivers incorrect 
results, the hazard is the potential consequence to the aircraft, its occupants, its owner, and so on, of in-
correct navigation. An error, like a failure, is a manifestation when a system is running. But an error can be 
contained entirely within a system, not necessarily leading to failures. For example, some database systems 
can detect and remediate “local deadlocks” that involve perhaps a pair of threads, and they can do this in a 
generally transparent manner. Another example is an unexpected exception (such as might be raised when 
a null pointer is de-referenced) being handled locally within a component or subsystem. More broadly, 
architectures can be designed to detect errors, including security problems, within individual components 
and can reconfigure themselves to isolate or otherwise neutralize those errors.� Errors, in turn, are enabled 
by local faults in code. A fault is a static flaw in the code at a particular place or region or identifiable set of 
places. Examples of faults include points in code where integrity tests are not made (leading to robustness 
errors), where locks are not acquired (leading to potential race conditions), where data is incorrectly inter-
preted (leading to erroneous output values), where program logic is flawed (leading to incorrect results), 
and so on. 

In systems that include hardware, probabilistic models are used to make predictions regarding when 
errors or failures are likely to occur—for example, to compute mean time to failure or expected lifetimes of 
components. These models are the core of reliability theory, and they can involve complex relationships of 
conditional probability (i.e., faults that are more likely in the presence of other faults), coupled probability 
(e.g., when many faults are made more likely in adverse weather), and other complexities. With software, 
these probabilistic models are less useful, since the failures are caused by intrinsic design flaws that require 
implementation changes for correction. Intermittent errors in software are thus “designed into the code” 
(albeit unintentionally). Repair thus means making changes in the flawed design. For embedded software, 
where the software includes fault-tolerance roles, hybrid models are often most helpful.

This model helps to highlight the challenges associated with effective software testing, inspection, and 

� Of course, it is possible that the mechanism by which errors are contained results in a loss of information regard-
ing both the errors and the fact that they were contained. This information loss can create dangerous situations. The 
well known case of the Therac 25 failures (Nancy G. Leveson and Clark S. Turner, 1993, “An Investigation of the Therac-25 
Accidents,” IEEE Computer 26(7):18-41) is a particularly compelling example of the consequences of inadequate informa-
tion regarding actual error containment in operations. In this case, engineers acted on a false supposition regarding the 
extent of error containment by a hardware mechanism in operations, resulting in fatal x-ray doses being administered 
to cancer patients.

static analysis. The results of tests that fail are manifestations of errors (unit tests) or failures (system tests). 
Assuming the tests are valid, the engineer must then ascertain which faults may have led to the error or 
failure manifestations. This reverse-engineering puzzle can be challenging, or not, depending on the scope 
of the tests and the complexity of the code. Failures in system tests, for example, can derive from the full 
scope of the code, including incorporated vendor components and infrastructure. Test results are gener-
ally of moderate to high value, because they reflect the priorities implicit in the test coverage strategy that 
guided their creation.�

One of the pitfalls of late testing, as would be the case if unit testing were deferred, is that the faults 
identified may have become very expensive to repair, adding substantially to engineering risk. If the fault 
is fundamental to the design of a particular interface, then all clients and suppliers that share that interface 
may be affected as part of the repair process. If the fault is architectural, the costs may be greater, and there 
may be new engineering risks associated with exploration of alternative options. This suggests both that 
testing be done at the component level early in the process and that commitments related to architecture 
and interface design be evaluated through modeling, simulation, and analysis as early as possible in the 
lifecycle.

The results of inspections, on the other hand, generally point to specific places in code or in models 
where there are problems of one kind of another. This, from a purely theoretical basis, may be why inspec-
tions are sometimes measured as being more effective than testing by a measure of defects found per hour. 
Because inspections usually combine explicit targeting of issues and opportunistic exploration, the issues 
found are generally high value.

Static analysis results, including both sound analyses and heuristic analyses, generally point to faults in 
the code. They thus share with inspections the productivity advantage of avoiding the puzzle-solving inher-
ent in the handling of adverse test results. Additionally, static analysis results can highlight low-probability 
intermittent errors that might routinely crash continuously operating servers but not be readily detectable 
using conventional testing. Unlike validated tests, analysis results can include false positives, which are indi-
cations of possible faults when there are actually no faults. (Unvalidated tests can also produce false posi-
tives in cases where the code is “correct,” but the test case is not.) Sound static analysis (i.e., static analysis 
with no false negatives) is used in compiler type checkers and some free-standing analysis tools. Its results 
are usually tightly targeted to very particular attributes and can lead fairly directly to repairs. Heuristic static 
analysis results, such as from open-source tools PMD and FindBugs, have considerably broader coverage 
than targeted sound analysis. But the results are typically less exact, and include false negatives (faults not 
found) as well as false positives. Additionally, there can be large numbers of results ranging from serious 
issues to code layout style suggestions. This necessitates an explicit process to set priorities among the 
results. An analysis of the open-source Hadoop system, for example, can yield more than 10,000 findings.

 2 Test coverage metrics can be useful, but there are many kinds of coverage criteria. Pure “statement coverage” may 
be misleading, because it may indicate a prevalence of regression tests crafted in response to defects rather than of tests 
motivated by more “proactive” criteria.

Underlying both preventive and evaluative methods are the two most critical broad influences on 
quality: judicious choice of process and practices, and the capability and training of the people involved 
in the process. Process and practices can include techniques for measurement and feedback in process 
execution in support of iteration, progress and earned value tracking, and engineering-risk management. 
Indeed, a key feature of process design is the concept of feedback loops specifically creating opportuni-
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BOX 4.2 
Faults, Errors, Failures, and Hazards

A failure is a manifestation of a system that is inconsistent with its functional or quality intent—it fails to 
perform to specification. A hazard is a consequence to an organization or its mission that is the result of a 
system manifesting a failure. That is, if a system has been placed in a critical role and a failure occurs, then 
the hazard is the consequence to that role. For example, if an aircraft navigation system delivers incorrect 
results, the hazard is the potential consequence to the aircraft, its occupants, its owner, and so on, of in-
correct navigation. An error, like a failure, is a manifestation when a system is running. But an error can be 
contained entirely within a system, not necessarily leading to failures. For example, some database systems 
can detect and remediate “local deadlocks” that involve perhaps a pair of threads, and they can do this in a 
generally transparent manner. Another example is an unexpected exception (such as might be raised when 
a null pointer is de-referenced) being handled locally within a component or subsystem. More broadly, 
architectures can be designed to detect errors, including security problems, within individual components 
and can reconfigure themselves to isolate or otherwise neutralize those errors.� Errors, in turn, are enabled 
by local faults in code. A fault is a static flaw in the code at a particular place or region or identifiable set of 
places. Examples of faults include points in code where integrity tests are not made (leading to robustness 
errors), where locks are not acquired (leading to potential race conditions), where data is incorrectly inter-
preted (leading to erroneous output values), where program logic is flawed (leading to incorrect results), 
and so on. 

In systems that include hardware, probabilistic models are used to make predictions regarding when 
errors or failures are likely to occur—for example, to compute mean time to failure or expected lifetimes of 
components. These models are the core of reliability theory, and they can involve complex relationships of 
conditional probability (i.e., faults that are more likely in the presence of other faults), coupled probability 
(e.g., when many faults are made more likely in adverse weather), and other complexities. With software, 
these probabilistic models are less useful, since the failures are caused by intrinsic design flaws that require 
implementation changes for correction. Intermittent errors in software are thus “designed into the code” 
(albeit unintentionally). Repair thus means making changes in the flawed design. For embedded software, 
where the software includes fault-tolerance roles, hybrid models are often most helpful.

This model helps to highlight the challenges associated with effective software testing, inspection, and 

� Of course, it is possible that the mechanism by which errors are contained results in a loss of information regard-
ing both the errors and the fact that they were contained. This information loss can create dangerous situations. The 
well known case of the Therac 25 failures (Nancy G. Leveson and Clark S. Turner, 1993, “An Investigation of the Therac-25 
Accidents,” IEEE Computer 26(7):18-41) is a particularly compelling example of the consequences of inadequate informa-
tion regarding actual error containment in operations. In this case, engineers acted on a false supposition regarding the 
extent of error containment by a hardware mechanism in operations, resulting in fatal x-ray doses being administered 
to cancer patients.

static analysis. The results of tests that fail are manifestations of errors (unit tests) or failures (system tests). 
Assuming the tests are valid, the engineer must then ascertain which faults may have led to the error or 
failure manifestations. This reverse-engineering puzzle can be challenging, or not, depending on the scope 
of the tests and the complexity of the code. Failures in system tests, for example, can derive from the full 
scope of the code, including incorporated vendor components and infrastructure. Test results are gener-
ally of moderate to high value, because they reflect the priorities implicit in the test coverage strategy that 
guided their creation.�

One of the pitfalls of late testing, as would be the case if unit testing were deferred, is that the faults 
identified may have become very expensive to repair, adding substantially to engineering risk. If the fault 
is fundamental to the design of a particular interface, then all clients and suppliers that share that interface 
may be affected as part of the repair process. If the fault is architectural, the costs may be greater, and there 
may be new engineering risks associated with exploration of alternative options. This suggests both that 
testing be done at the component level early in the process and that commitments related to architecture 
and interface design be evaluated through modeling, simulation, and analysis as early as possible in the 
lifecycle.

The results of inspections, on the other hand, generally point to specific places in code or in models 
where there are problems of one kind of another. This, from a purely theoretical basis, may be why inspec-
tions are sometimes measured as being more effective than testing by a measure of defects found per hour. 
Because inspections usually combine explicit targeting of issues and opportunistic exploration, the issues 
found are generally high value.

Static analysis results, including both sound analyses and heuristic analyses, generally point to faults in 
the code. They thus share with inspections the productivity advantage of avoiding the puzzle-solving inher-
ent in the handling of adverse test results. Additionally, static analysis results can highlight low-probability 
intermittent errors that might routinely crash continuously operating servers but not be readily detectable 
using conventional testing. Unlike validated tests, analysis results can include false positives, which are indi-
cations of possible faults when there are actually no faults. (Unvalidated tests can also produce false posi-
tives in cases where the code is “correct,” but the test case is not.) Sound static analysis (i.e., static analysis 
with no false negatives) is used in compiler type checkers and some free-standing analysis tools. Its results 
are usually tightly targeted to very particular attributes and can lead fairly directly to repairs. Heuristic static 
analysis results, such as from open-source tools PMD and FindBugs, have considerably broader coverage 
than targeted sound analysis. But the results are typically less exact, and include false negatives (faults not 
found) as well as false positives. Additionally, there can be large numbers of results ranging from serious 
issues to code layout style suggestions. This necessitates an explicit process to set priorities among the 
results. An analysis of the open-source Hadoop system, for example, can yield more than 10,000 findings.

 2 Test coverage metrics can be useful, but there are many kinds of coverage criteria. Pure “statement coverage” may 
be misleading, because it may indicate a prevalence of regression tests crafted in response to defects rather than of tests 
motivated by more “proactive” criteria.

ties for feedback at low cost and with high benefit in terms of reducing engineering risk.� Practices can 
also include approaches to defect tracking, root cause analysis, and so on. 

There is overlap between preventive and evaluative methods because evaluative methods are most 
effective when applied throughout a development process and not just as part of a systems-level accep-
tance evaluation activity. When used at the earliest stages in the process, evaluative methods shorten 

�  These feedback loops may be conceptualized as “OODA loops”—Observe, Orient, Decide, Act. The OODA model for opera-
tional processes was articulated by COL John Boyd, USAF, and is widely used as a conceptual framework for iterative planning 
and replanning processes.



Copyright © National Academy of Sciences. All rights reserved.

Critical Code:  Software Producibility for Defense
http://www.nap.edu/catalog/12979.html

94	 CRITICAL CODE: SOFTWARE PRODUCIBILITY FOR DEFENSE

feedback loops and guide development choices, thus lessening engineering risk. (To illustrate the range 
of methods and interventions related to quality in software, a summary is presented in Box 4.3.)

Judgments Are Based on Chains of Evidence

The goal of assurance methods is to create connections, a set of “chains of evidence” that ultimately 
connect the code that executes with architectural, functional, and quality requirements. The creation of 
these chains is necessarily an incremental process, with “links” in the chains being created and adapted 
as the development process proceeds. An example of a link is a test case that connects code with a 
particular expectation regarding behavior at an internal software interface. Another link, perhaps cre-

BOX 4.3 
Examples of Preventive and Evaluative Methods

Below are several illustrative examples of preventive methods. Underlying all of these particular meth-
ods is an emphasis on preventing the introduction of defects or finding them as soon as possible after they 
are introduced. 

•	 Requirements analysis. Assess operational hazards derived from context of use, adjusting operational 
plans to the extent possible to minimize potential hazard. Assess goals and limits with respect to quality 
attributes.

•	 Architecture design. Adopt structural approaches that enhance reliability, robustness, and security 
while also providing flexibility in areas of anticipated change.

•	 Ecosystem choice. Affiliate with ecosystems based on quality assessments of components and infra-
structure derived from the associated supply chain. 

•	 Detail design. Adopt software structures and patterns that enhance localization of data and control 
over access.

•	 Specification and documentation. Capture explicit formal and informal representations of functional 
and quality-attribute requirements, architecture description, detail design commitments, rationale, etc.

•	 Modeling and simulation. Many software projects fail because the consequences of early decisions 
are not understood until late in the process, when the costs of revising those decisions appear to be pro-
hibitively high, leading to costly workarounds and acceptance of additional engineering risk. It may be 
perceived by project managers that evaluation cannot be done before code is written and can be run. In 
fact, a range of techniques related to modeling and simulation can be employed to achieve “early valida-
tion” of critical up-front decisions. These techniques include prototyping, architectural simulation, model 
checking of specifications, and other kinds of analysis.�

•	 Coding. Adopt secure coding practices and more transparent structured coding styles that facilitate 
the various evaluative methods.

•	 Programming language. Select languages that provide first-class encapsulation and controlled storage 
management.

•	 Tooling. Support traceability and logging structures in tooling, providing direct (and ideally seman-
tics-based) interlinking among related design artifacts such as architecture and design specifications, source 
code, functional specifications, quality-attribute specifications, test cases, etc. 

�  Daniel Jackson’s Alloy model checker is an example of early validation technique for specifications. Daniel Jackson 
and Martin Rinard, 2000, “Software Analysis: A Roadmap,” in The Future of Software Engineering, Anthony Finkelstein, ed., 
New York: ACM, pp. 215-224.

Here are several illustrative examples of evaluative methods. These are applied throughout a lifecycle 
to assess various kinds of software artifacts. 

•	 Inspection of the full range of software-related artifacts, ranging from models and simulation results 
supporting requirements and architecture design to detailed design specifications, code, and test cases.

•	 Testing of code with respect to function, performance, usability, integration, and other characteristics. 
Test cases can be developed to operate at the system level, for example, simulating web-browser clients 
in testing e-commerce or other web services systems, or they can operate on code “units” across software 
interfaces to test aspects of component behavior. Test cases are selected according to a combination of 
coverage strategies determined by architecture and ecosystem, software design, programming language 
choice, potential operational risks, secure coding practices, and other considerations.

•	 Direct analysis of source, intermediate, or binary code, using sound tools that target particular quality 
attributes and heuristic tools that address a broader range of quality attributes.

•	 Monitoring of operational code and dynamic analysis of running code, focused on particular quality 
attributes. As with testing, monitoring can operate at the system level, including logging and event cap-
ture, as well as at the unit level, such as for transaction and other internally focused event logs. Monitoring 
supports prevention, evaluation, and also forensics after failures occur. Infrastructure for monitoring can 
support a range from real-time to short-time delayed to forensic analyses of the collected event data. In 
the absence of other feedback loops, this can assist in focusing attention on making repairs and doing 
rework. 

•	 Verification of code against specifications. A number of formal “positive verification” capabilities have 
become practical in recent years for two reasons: First, scalability and usability are more readily achievable 
when verification is targeted to particular quality attributes.� Second, new techniques are emerging, based 
on model checking or sound analysis that support this more targeted verification without excessive require-
ments for writing formal specifications and assertions in code.

Various process models have been proposed that provide a framework within which these various 
preventive and evaluative methods can be applied in a systematic fashion, structured, as it were, within 
Observe-Orient-Decide-Act (OODA) loops of various durations. Two of the most prominent are the Lipner-
Howard method (the SDC, or Secure Development Lifecycle) and the method proposed by McGraw.

�  An example is the Microsoft Static Driver Verifier tool developed by Tom Ball for verifying protocol compliance of 
Windows device driver code using model checking. See Steve Lipner and Michael Howard, 2006, The Security Development 
Lifecycle: A Process for Developing Demonstrably More Secure Software, Redmond, WA: Microsoft Press.
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ated using model-based analysis techniques, would connect this specific interface expectation with a 
more global architectural property. Another link is the connection of a fragmentary program annotation 
(“not null”) with the code it decorates. A further link would connect that global architectural property 
with a required system-level quality attribute. Validation of this small chain of links could come from 
system-level testing or monitoring that provides evidence to support presence of the system-level qual-
ity attribute.

This metaphor is useful in highlighting several significant features that influence assurance practice 
and the cost and potential to achieve high levels of assurance. Here are some examples of influences on 
the success of assurance practice:

BOX 4.3 
Examples of Preventive and Evaluative Methods

Below are several illustrative examples of preventive methods. Underlying all of these particular meth-
ods is an emphasis on preventing the introduction of defects or finding them as soon as possible after they 
are introduced. 

•	 Requirements analysis. Assess operational hazards derived from context of use, adjusting operational 
plans to the extent possible to minimize potential hazard. Assess goals and limits with respect to quality 
attributes.

•	 Architecture design. Adopt structural approaches that enhance reliability, robustness, and security 
while also providing flexibility in areas of anticipated change.

•	 Ecosystem choice. Affiliate with ecosystems based on quality assessments of components and infra-
structure derived from the associated supply chain. 

•	 Detail design. Adopt software structures and patterns that enhance localization of data and control 
over access.

•	 Specification and documentation. Capture explicit formal and informal representations of functional 
and quality-attribute requirements, architecture description, detail design commitments, rationale, etc.

•	 Modeling and simulation. Many software projects fail because the consequences of early decisions 
are not understood until late in the process, when the costs of revising those decisions appear to be pro-
hibitively high, leading to costly workarounds and acceptance of additional engineering risk. It may be 
perceived by project managers that evaluation cannot be done before code is written and can be run. In 
fact, a range of techniques related to modeling and simulation can be employed to achieve “early valida-
tion” of critical up-front decisions. These techniques include prototyping, architectural simulation, model 
checking of specifications, and other kinds of analysis.�

•	 Coding. Adopt secure coding practices and more transparent structured coding styles that facilitate 
the various evaluative methods.

•	 Programming language. Select languages that provide first-class encapsulation and controlled storage 
management.

•	 Tooling. Support traceability and logging structures in tooling, providing direct (and ideally seman-
tics-based) interlinking among related design artifacts such as architecture and design specifications, source 
code, functional specifications, quality-attribute specifications, test cases, etc. 

�  Daniel Jackson’s Alloy model checker is an example of early validation technique for specifications. Daniel Jackson 
and Martin Rinard, 2000, “Software Analysis: A Roadmap,” in The Future of Software Engineering, Anthony Finkelstein, ed., 
New York: ACM, pp. 215-224.

Here are several illustrative examples of evaluative methods. These are applied throughout a lifecycle 
to assess various kinds of software artifacts. 

•	 Inspection of the full range of software-related artifacts, ranging from models and simulation results 
supporting requirements and architecture design to detailed design specifications, code, and test cases.

•	 Testing of code with respect to function, performance, usability, integration, and other characteristics. 
Test cases can be developed to operate at the system level, for example, simulating web-browser clients 
in testing e-commerce or other web services systems, or they can operate on code “units” across software 
interfaces to test aspects of component behavior. Test cases are selected according to a combination of 
coverage strategies determined by architecture and ecosystem, software design, programming language 
choice, potential operational risks, secure coding practices, and other considerations.

•	 Direct analysis of source, intermediate, or binary code, using sound tools that target particular quality 
attributes and heuristic tools that address a broader range of quality attributes.

•	 Monitoring of operational code and dynamic analysis of running code, focused on particular quality 
attributes. As with testing, monitoring can operate at the system level, including logging and event cap-
ture, as well as at the unit level, such as for transaction and other internally focused event logs. Monitoring 
supports prevention, evaluation, and also forensics after failures occur. Infrastructure for monitoring can 
support a range from real-time to short-time delayed to forensic analyses of the collected event data. In 
the absence of other feedback loops, this can assist in focusing attention on making repairs and doing 
rework. 

•	 Verification of code against specifications. A number of formal “positive verification” capabilities have 
become practical in recent years for two reasons: First, scalability and usability are more readily achievable 
when verification is targeted to particular quality attributes.� Second, new techniques are emerging, based 
on model checking or sound analysis that support this more targeted verification without excessive require-
ments for writing formal specifications and assertions in code.

Various process models have been proposed that provide a framework within which these various 
preventive and evaluative methods can be applied in a systematic fashion, structured, as it were, within 
Observe-Orient-Decide-Act (OODA) loops of various durations. Two of the most prominent are the Lipner-
Howard method (the SDC, or Secure Development Lifecycle) and the method proposed by McGraw.

�  An example is the Microsoft Static Driver Verifier tool developed by Tom Ball for verifying protocol compliance of 
Windows device driver code using model checking. See Steve Lipner and Michael Howard, 2006, The Security Development 
Lifecycle: A Process for Developing Demonstrably More Secure Software, Redmond, WA: Microsoft Press.
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•	 There is a great diversity of the particular kinds of attributes that are to be assured. These range 
from functional behavior, performance, and availability, to security, usability, and interface compliance 
for service application programming interface APIs and frameworks. The Mitre Corporation maintains 
a catalog, the Common Weakness Enumeration (CWE)� that illustrates the diversity in its identification 
of more than 800 specific kinds of “software weaknesses.”

•	 There is also a great diversity of kinds of artifacts that must be linked in the chains. These include 
code, design models, architectural models, and specifications of functional and quality requirements. 
These also include more focused artifacts such as individual test cases, inspection results, analysis results, 
annotations and comments in code, and performance test results.

•	 There is a range of formality among these artifacts—some have precise structure and meaning, 
and others are informal descriptions in natural language or presented as diagrams. (This issue is elabo-
rated below.)

•	 Components and services encompassed in a system may have diverse sources, with varying 
degrees of access to the artifacts and support/cooperation in an overall assurance process. Identification 
and evaluation of sources in an overall supply chain is a significant issue for cybersecurity (see Box 4.1), 
for which both provenance (trust) and direct evidence (verification) are considerations that influence 
the cost and effectiveness of an assurance process.

•	 Many different kinds of techniques must be employed to assess consistency among artifacts and 
to build links in the chain. The most widely used are testing and inspection. Other techniques that are 
increasing in importance include modeling and simulation (e.g., for potential architecture choices), static 
analysis, formal verification and model checking (for code, designs, specifications, and models), and 
dynamic analysis and monitoring (for code, design, and models).

•	 Some techniques are based not on reasoning about an artifact or component, but on safely con-
taining it to insulate system data and control flow from adverse actions of the component. Techniques 
include sandboxing, process separation, virtual machines, etc.�

•	 Different links in the chain may have different levels of “confidence,” with some providing (con-
tingent) verification results and others providing a more probabilistic outcomes that may (or may not) 
increase confidence in consistency among artifacts. Test coverage analysis, for example, can be used to 
assess the appropriate degree to which a particular set of test results may be generalized to give confi-
dence with respect to some broad assurance criterion.

•	 Methods or their implementations may be flawed or implemented in a heuristic way that may 
lead to false positives and/or false negatives in the process of building chains.

Perhaps most importantly, the cost-effectiveness of activities related to software assurance is heavily 
influenced by particular choices made in development practice—factors that are in the control of devel-
opers, managers, and program managers. Here are examples of factors that influence the effectiveness 
and cost of both preventive and evaluative methods: 

•	 In assurance activities, access is provided not only to source code, but also to specifications, 
models, and other documentation. Without this information, evaluators must expend resources to 
“reverse engineer” design intent on code produced within their own organization and create these 
intermediate models. In the 1980s, a study suggested that, in fact, the DoD spends almost half of its 

�  The CWE inventory (available online at http://cwe.mitre.org/) focuses primarily on security-related attributes. See also, for 
example, Robert C. Seacord, 2005, Secure Coding in C and C++, Boston: Addison-Wesley, for an inventory of potential issues related 
to not only secure, but also safe and high-quality code. There is substantial overlap of attributes related to safe and quality coding, 
on the one hand, and security, on the other. 

�  Use of these containment or isolation techniques may create benefits for components that are opaque (some vendor executa-
bles, for example) or that are difficult to assure intrinsically (mobile code and scripts in a web services environment, for example). 
But there are also potential hazards associated with the containment infrastructure itself (such as virtual machine or a web-client 
sandbox), which must often also be assured to a high level of confidence.
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post-deployment cost (47%) reverse engineering its own code.10 Of course, this reverse engineering was 
for diverse purposes, but it illustrates the failure of documentation and traceability. 

•	 Traceability exists among the diverse software artifacts including code and the various model and 
documentation components. The goal, as noted above, is to ultimately connect code with architectural, 
functional, and quality requirements. In some software engineering groups, evaluators ignore docu-
mentation on the premise that it is easier to reverse engineer the code being evaluated (but see above). 
That is, while the artifacts exist, traceability is lacking, making it difficult both to locate the correct 
document in a sea of documentation and to verify that the description in the document remains current 
with as-built code. Modern team-based software tooling has presented a revolution in traceability and 
logging—for example, each line of code in modern tool-enhanced code bases can have direct links to its 
complete history including which developers have “touched” that line of code and for what purpose. 

•	 Choices are made regarding architecture, design, and coding that facilitate more definitive 
evaluation outcomes. These choices relate to formality, explicit complexity in structure, and information 
hiding and modularity, as well as to the characteristics of possible executions of the code. For example, 
distributed and concurrent systems can, for an unchanging input, exhibit different behaviors with each 
run. This is due to the asynchrony often characteristic of concurrent execution. When errors are unlikely 
but possible, testing and even inspection may not offer sufficiently useful results.11

•	 Product-line and ecosystems choices can enable leveraging of assurance activity across multiple 
projects. This benefit is proportional, however, to the extent that assurance techniques can be composed, 
which in turn is enabled by our ability to model assurance-related attributes at component or protocol 
interfaces. (This is a research issue identified in Chapter 5.)

•	 Choice of programming language (and coding style) can significantly influence ability to assure. 
Highly complex “tangled code” in a language such as C (which lacks first-class encapsulation and con-
trolled access to storage) may present formidable barriers to evaluative methods in achieving confident 
assurance judgments when compared, for example, with well-structured programs in modern languages 
such as C#, Java, and Ada that have comparable functionality.12 In these latter cases, “well-structured” 
means two things: First, modular structures can be crafted using modern type systems to replace tangled 
complexity with organization. Second, intrinsic support for information hiding and encapsulated data 
simplifies the structure of the various links in the chain of evidence that need to be constructed.

All evaluative methods are challenged by the difficulty of defining the scope of the operating envi-
ronment that may be delineated as the “boundaries” for evaluation.13 Unanticipated features of the 
operational environment that affect system operation may influence not only hazard, but also the validity 
of requirements. An example of such a scoping error occurred during a test of an F-22 that originated 
at Edwards Air Force Base and flew to an altitude where it became exposed to the many radio emitters 
in the Los Angeles basin. This was the first such intensive radio exposure in the test process for the jet, 

10  See Girish Parikh and Nicholas Zvegintzov, eds., 1983, Tutorial on SoftwareMmaintenance, Silver Spring, MD: IEEE Computer 
Society Press. See also Center for Software Engineering at the University of Southern California (USC), 2000,“COCOMO II,” Los 
Angeles: University of Southern California. Available online at http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/
CII_modelman2000.0.pdf. Last accessed August 20, 2010.

11  An early example was the start-up failure in establishing communications among the five computers on the NASA Space 
Shuttle on April 10, 1981. Later investigation of the design showed that there had been a 1 in 67 chance that the computers would 
not synchronize. This meant that, in testing, there was a better than 98 percent chance that the error would not be observed. If 
there had been anticipation of stochastic phenomena, the error could have been found with more pervasive testing. But in practice 
this is infeasible for two reasons: (1) there are significant errors that might occur with much lower frequencies, and (2) there are 
too many different kinds of interactions that might prompt this kind of testing. 

12  The performance gap between “lower level” languages such as C and modern encapsulation-based languages has generally 
been closed and, indeed, modern languages may offer better performance in many cases since runtime checks can be eliminated 
when static verification is achieved by compilers for typing and encapsulation properties, for example. 

13  Michael Jackson, 1995, Software Specifications and Requirements: A Lexicon of Practice, Principles and Prejudices, Boston: Addison-
Wesley.
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despite much testing. Unexpectedly, the software concluded that the jet was under attack, and it went 
into an electronic defensive mode. Crew were forced to shut down all functions to prevent unintended 
consequences. This experience led the F-35 Joint Strike Fighter developers to test all their software in 
a fully realized flying testbed well before the actual fighter was flown. This flying testbed is now one 
of many steps in a highly comprehensive (and expensive) process of operational testing in support of 
acceptance.

Practices Influence Feasibility and Cost of Assurance

The examples above illustrate that development practices and technologies can profoundly influ-
ence the ability to achieve successful and cost-effective evaluation outcomes. These development choices 
range from architectural choices to choices of programming language and coding style. As noted above, 
complex tangled code is more difficult to evaluate than structurally simpler code, regardless of whether 
the evaluation is done using testing, inspection, static analysis, or model checking. It may be, for exam-
ple, that the 2 percent performance improvement that is created through the additional complexity may 
not be justified when the added evaluation costs are considered.14 

One of the great benefits of modern tooling is that a much more comprehensive record of develop-
ment can be created to facilitate evaluation. When more of the various development-related artifacts are 
formal (i.e., have precise structure and meanings), then tooling can be used to greater advantage in both 
prevention and evaluation (as well as in prototyping and other analogs of the modeling and simulation 
common in the development of physical systems). Degree of formality is an important characteristic of 
software-related artifacts, discussed at greater length below. 

Finding 4-1: The feasibility of achieving high assurance for a particular system is strongly influenced 
by early engineering choices, particularly architectural and tooling choices. 

Assurance Techniques and Results Can Benefit Developers Directly

Because of recent advances in traceability, evaluative techniques, and expressiveness of models, 
this record of artifacts associated with development is gaining considerable value in contributing to the 
creation of chains of evidence. When development teams see immediate benefits from the evidentiary 
material, they are naturally led to adopt a broader range of preventive practices to create additional 
links in the chain of evidence. It is increasingly apparent that modern assurance techniques can provide 
immediate benefits in the form of direct feedback loops and greater transparency in the processes imple-
mented by small teams and even by individual developers. The techniques and associated models are 
also enablers of flexibility and evolution, which are essential in long-lived software systems of all kinds, 
because of the rapid changes in operational requirements, infrastructure, ecosystems, and underlying 
hardware capabilities.

software Assurance fundamentals

Software Reliability Is Different

Unlike other engineering materials, software does not wear out or suffer transient faults. But it can 
suffer transient errors, for example, because of concurrency (see Box 4.2). This is both an obvious and 

14  Even if choices related to architecture and language affect performance or code size by observable constant factors, there is a 
pareto principle that suggests that this can be mitigated through performance-focused tuning of a small number of “hot spots” in 
code. This enables the benefits of superior structure to be realized without adverse performance cost. This point notwithstanding, 
the idea of a tradeoff of speed against structure and safety is not necessarily principled and may, in the long haul, be incorrect. 
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subtle point. It is obvious in the sense that there is no analog of metal fatigue, rust and oxidation, or 
other kinds of physical deterioration or environmentally induced change in physical properties. It is 
subtle because software is often the mechanism of choice for handling such faults in associated hardware, 
such as sensors and actuators in a robotic or cyber-physical system, or faults in underlying computing 
hardware such as processor chips, memory, and communication channels. When software delivers “bad 
results,” including transient errors, these are due to “permanently faulty” software design, which is 
addressed by changes in the software code—that is, a “new software design” in the sense of changing 
the mechanism that is implemented.

Despite these differences, the terminology of reliability is usefully applied to software.15 The core 
of the terminology is four words: fault, error, failure, and hazard. These are defined and illustrated in 
Box 4.2. 

Information Loss and Traceability

As noted above, the software engineering process is almost always characterized by cycles of infor-
mation loss and recovery. Although code16 is all that is necessary for the software to operate, consider-
able additional information is needed to effectively support ongoing evolution of the software over its 
lifespan. Some of this information is formal—that is, its expressions are precisely structured and have 
exact meanings—while other information is “informal,” which typically means expressed in the form of 
natural language text, presentation charts, sketches, and informal diagrams. Examples of formal informa-
tion are test cases, assertions in code, certain kinds of design models such as unified modeling language 
(UML) StateCharts and formal structural architectural models (such as Acme). Examples of informal 
information include comments in code, design description and rationale, structured API documentation 
(such as Javadoc), and architecture and design diagrams such as from UML. 

Two small scenarios illustrate the value of this kind of information in the design process:

1.	 A planning process for system enhancement leads to reconsideration of a principal architectural 
commitment such as choice of ecosystem, design of structural architecture, or choice of infrastructure 
components. Original designers and developers are sought out to help a new team of planners to 
understand elements of decision rationale for the as-built system, including other alternatives that were 
considered and why those choices were made.

2.	 An internal algorithmic enhancement is made in a module that connects to the rest of the system 
through a software interface or a network protocol. Questions arise concerning particular “rules of the 
road” for that interface or protocol, and they can be resolved only through an examination of other 
modules in the system that operate through that interface or protocol. Other questions arise due to the 
possible dependency of client code on “accidental features” visible through an interface or protocol but 
not intended to be promised.

Software producibility is directly influenced not only by the extent of design-related information 
that is retained and managed, but also by the means by which this design-related information is rep-
resented.17 There are four dimensions of representation that are most significant. These are formality, 
modeling, consistency, and usability. 

15  Daniel P. Siewiorek and Robert S. Swarz, 1998, Reliable Computer Systems: Design and Evaluation, Natick, MA: AK Peters, 
Ltd.

16  “Code,” in this context, includes both executable files and associated declarative configuration files such as the XML files 
often used in .Net and Java EE web systems.

17  The committee uses the phrase “design-related information” in a broad sense to include not only architectural and structural 
commitments, but also other commitments related to quality and functional attributes not otherwise explicit in the code itself.
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Formality

When information is represented formally, tools not only can make maximum use of the meanings 
that are expressed but also can rely on those meanings as being exact. Tools can also use informal infor-
mation, of course, but the inexactness of meanings limits their ability—and consequently the ability of 
software developers—to rely on any particular meaning as being correct. This suggests a strong bias 
for formality.18 The extent of formality (i.e., expressiveness of formal notations) is limited, however, by 
the state of practice regarding what we know how to express. Much of the advancement in program-
ming languages (assembly language to C to C++ to C# and Java, for example) and design notations 
(informal ad hoc structural diagrams to the UML family, for example) is enabled by advancements in 
technical progress by the research community. One of the challenges is understanding what scope of 
the worldly context of operations must be modeled in order to support reasoning regarding the full 
range of functional and quality requirements.19 This is an area where there has been steady progress in 
research, along with significant influence of that research on practice. 

Formal information can be very simple, such as references to version numbers, identifiers in defect 
databases, web links (URLs), or the extensive structured metadata in a defect management database. 
This illustrates the notion of partial formality, sometimes called “semiformal” or “semi-structured,” 
wherein formal information (such as web links) is embedded in informal texts, or vice versa (e.g., tex-
tual comments embedded in code). Another example, in the defect databases, is the fact that there is 
also considerable latitude for informal expression within the overall structure of the wealth of “formal” 
metadata—for example the words used to describe the defect or the constituent messages in the “blog” 
record associated with the defect. Formality can also be semantically very “deep,” such as the temporal 
logic specifications used to express models for model-checking tools.20 

A key insight is that any step from informal text to structured metadata facilitates traceability and 
analysis. These steps involve making structure more explicit and identifying precise meanings for the 
elements of the structure. This is not to say that all models should be formal—achieving formality can 
create constraints on flexibility and expressiveness. This is why there is so much partial formality. But 
it also reminds us that incremental steps can be made as research progresses.

Semantic expressiveness is a key distinguishing feature among programming languages, within 
which small steps can make a considerable difference. For example, the first-class typing of Ada, C#, 
and Java creates significant advantages for development teams in managing structural aspects of larger-
scale systems, and particularly in ongoing assessment of consistency of as-built code with architectural 
specifications. The C language does not afford such advantages. Although the C++ language gives 
some of the benefits, it is possible to “bypass” the protection mechanisms in C++ programs and thus 
lose some of the benefits. Much of the subject of modern programming language research is how to 
increase the expressiveness of type systems and other structuring mechanisms to facilitate more modular 
management of large evolving code bases as they evolve and more concise expression of abstractions 
represented in the code and their relationships.

18  This does not necessarily relate to “formal methods” as traditionally construed. See footnote 20 below. The idea of “formality” 
is about precision of structure and meaning—and even HTML tags confer a small increment of formality. This is distinct from 
many of the methodologically focused ideas proposed under the rubric of “formal methods” over the past four decades. Much of 
the recent success of mathematically based approaches that build on the tradition of formal methods has been in areas often called 
“lightweight formal methods”—approaches that trade scope and generality for scalability and ease of use. These more scalable 
approaches include model checking, sound static analysis, and some approaches based on assertion-passing verification. Because 
they focus more narrowly on particular quality or functional attributes, these approaches have achieved success in professional 
development practice. An example is Microsoft’s use of diverse analysis tools such as SLAM, PreFast, Spec#, and others.

19  This issue is explored at length in Michael A. Jackson, 2001, Problem Frames: Analysing and Structuring Software Development 
Problems, Boston: Addison-Wesley.

20  The term “formal methods” refers to techniques for reasoning about code or design models, generally focusing on logical 
relationships between specifications and the code or models. 
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Modeling

From the standpoint of assurance, models of all kinds—architecture, design, performance, structural, 
and semantic—form the intermediate way-points that facilitate linking (in the chain of evidence) of 
executable code with requirements of various kinds. The way-points include “domain-oriented” models 
related to requirements.21 The UML family of design models includes models that are more formal, such 
as StateCharts, and others that are less formal, such as deployment diagrams. The advantage of the more 
formal models is that there is more that tools can do to support traceability and analysis. StateCharts 
has a precise semantics rooted in state machines, which enables creation of a range of tools for analysis, 
simulation, consistency checking with code, and the like. 

There are benefits, of course, when models can not only support the software development process 
and management of engineering risks (e.g., through simulation and analysis), but also facilitate the 
activities related to assurance. Many of the topics identified in Chapter 6 relate to modeling and the use 
of models for various purposes. 

Tools such as model checkers and static analysis tools are informed by formal specification frag-
ments, which are a kind of model. These are sometimes expressed in self-contained specifications (e.g., 
linear temporal logic specifications or Alloy specifications for model checkers) and sometimes use 
fragmentary annotations associated with code or models. Some verification tools make use of highly 
expressive specification languages for functional properties. 

In general there is an advancing frontier from informal to formal models—actually from less formal 
to more formal models—and modern tooling is creating momentum to push this frontier more rapidly 
and effectively. In Chapter 5, there is discussion regarding research goals related to both advancing 
modeling and specification capability and also to improving techniques and tools for reasoning and 
analysis. Examples include techniques ranging from theorem proving, model checking, and analysis to 
type modeling and checking, architectural and design analysis, and analyses related to concurrency and 
parallelism. Much of the recent progress in program analysis, which is particularly evident in certain 
leading vendor development practices, is built on these ideas.

Consistency

Information in a software development process is gathered incrementally over time. Almost always, 
systems are evolving and so are detailed choices regarding architecture, requirements, and design. A 
seemingly unavoidable consequence is a loss of consistency within the database of information captured 
over time. Indeed, developers often set aside documents and model descriptions, and resort to interview-
ing colleagues and doing reverse engineering of code in order to develop confidence in the models they 
are building or evolving. Precision in models (formality) can be useful in achieving consistency when 
tools can be used to analyze consistency on an ongoing basis. Tool use ranges from maintenance of bat-
teries of regression tests to the use of verification and analysis tools to compare code with models. With 
both formal and informal information, explicit hyperlinking can expose interrelationships to developers 
and enable them to more readily sustain consistency among design artifacts. 

Extensive hyperlinking is a feature of modern development tools, including team tools and devel-
oper tools. It is an essential feature, for example, of modern open-source development and build envi-
ronments.22 With automated tools, a very fine granularity can be achieved without adding to developer 
effort. For example, an open-source developer can check in code by submitting a simple “patch” file, 

21  Requirements always start with informal articulations that are made precise and potentially formal (in the sense of this chap-
ter) through the development process. One of the great benefits of high-quality models for requirements and associated domain 
concepts is the opportunity for early validation. These models can include scenarios, use cases, mock-ups, etc.

22  Linking and other kinds of support for traceability are supported in most commercial development tools and in high-end 
open-source ecosystems. An example that can be readily explored is the Mozilla development ecosystem—see, for example, code 
and tools at https://hg.mozilla.org/mozilla-central. 
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and from this the tools can update the information database in a way that shows the identity of the 
developer who last changed every individual line of code, along with some informal and semi-formal 
rationale information such as a reference to a file version number and an identifier from the issue/defect 
database.

Usability

Even the highest quality information does not add value if it is not readily accessible and applicable 
by the key stakeholders in the software development process—developers, managers, evaluators, and 
others. With respect to search, for example, there are enormous differences in efficiency between tradi-
tional paper documents and electronic records. Augmenting search with linking and with direct support 
for anticipated workflows is another large step in efficiency. Choice of representation for expressing 
design information and models can also make a significant difference—“developer-accessible” notations 
can reduce training requirements and lower barriers to entry for developers to capture information that 
otherwise might not be expressed at all. 

Indeed, we can contemplate a concept of “developer economics” that can be used as a guide for 
assessing potential motivation of individual developers in using assurance-related tools. An example of 
bad developer economics is when a developer or team is asked to devote considerable time and effort 
to expressing design information when payback is uncertain, diffuse, or most likely far in the future. A 
goal in formulating incentive models that motivate developer effort (beyond management or contractual 
mandates) is to afford developers increments of value for increments of time invested in capturing design 
information, and to provide that value as soon as possible after the effort has been invested. Thus, when 
a developer writes a single-unit test case, it becomes possible both to execute that test case right away 
on an existing small unit, and to validate the test case against other design information (and to capture 
links with that design information to support consistency). This “early gratification incrementality” 
can be a challenge to achieve for certain kinds of tools and formal documentation, however. Success 
in achieving this “early gratification” is one of the reasons why unit testing has caught on, and model 
checking and analysis are also emerging into practice.23

Finding 4-2: Assurance is facilitated by advances in diverse aspects of software engineering practice 
and technology, including modeling, analysis, tools and environments, traceability, programming 
languages, and process support. Advances focused on simultaneous creation of assurance-related 
evidence with ongoing development effort have high potential to improve the overall assurance of 
systems.

Challenges for Defense and similar complex systems

Hazards

The extent and rigor adopted for an evaluation process is most directly influenced by the potential 
hazards associated with the intended operational environment. Missile launch control, cryptographic 
tools, infusion pumps for medication administration, automobile brake systems, and fly-by-wire avion-
ics are all “critical systems” whose design and construction are profoundly influenced by considerations 
of evaluation and assurance. For many critical systems, standards have been established that regulate 
various aspects of process, supply-chain decisions, developer training and certification, and evaluation. 
These standards are ultimately directed toward assurances regarding quality attributes in running code. 
From the particular perspective of assurance, any focus on aspects other than the intended delivered 

23  Difficulty in achieving this kind of incrementality has been a challenge to the adoption of emerging prototype functional 
verification systems. 
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code (and its associated chains of evidence) is intended either as a predictor of ultimate code quality 
or, often, as a surrogate for direct evaluation of some critical quality of that running code. The latter 
approach is often used as a “work-around” when direct evaluation is thwarted by the raw complexity 
of the system or the inadequacy of methods and tools available for direct evaluation. 

Indeed, system managers often feel that they face an uncomfortable tradeoff between enhancing 
the capability of a system and delivering a high level of assurance. This folkloric “quality-capability 
tradeoff” is particularly challenging because it may be difficult to know exactly where on the quality 
axis a particular design is likely to reside. Greater incentives for quality have had the effect of “pushing 
outward” this tradeoff curve for both preventive and evaluative methods. This observation explains, 
for example, why vendors such as Microsoft have made such a strong commitment to advancing in all 
areas of prevention and evaluation, because it enables them to offer simultaneous increases in quality 
and capability.

Capability and Complexity

A major complicating factor in software assurance for defense is the rapid growth in the scale, com-
plexity, and criticality of software in systems of all kinds. (This is elaborated in Chapter 1.) This growth 
adds to both factors in the risk product, including extent of consequence (hazard, due to the growing 
criticality of software systems, and cost of repair, due to the growing significance of early commitments) 
and potential for consequence (due to complexity and interlinking with other systems). The transition 
to fly-by-wire aircraft, which was for many years loudly debated, is an example of the growing con-
sequence of software. In the commercial world, we are now analogously moving to “drive-by-wire” 
vehicles, where the connections between brake and accelerator pedals and the respective mechanical 
actuators are increasingly computer mediated. The benefits are significant, in the form of anti-lock brak-
ing, cruise control, fuel economy, gas/electric hybrid designs, and other factors. But so are the risks, as 
documented in recent cases regarding software upgrades for the brake mechanisms for certain Toyota 
and Ford vehicles. 

An example of the risks of fly-by-wire were demonstrated when an F-22 pilot had to eject from his 
aircraft (which eventually crashed) when he realized that, due to an unexpected gyro shutdown, he had 
no ability to control the aircraft from the cockpit. He realized this only after takeoff, when the aircraft 
initiated a series of uncommanded maneuvers. In modern fighters, if the Vehicle Management System 
computers (VMS) are lost, so is the aircraft. 

As noted in National Research Council reports, more constrained domains such as medical devices 
and avionics benefit from rigorous standards of quality and practice such as DO-178B.24 These standards 
prescribe specific documents, process choices (including iterative models), consistency management and 
traceability practices, and assurance arguments (“verification”) that include various links of the chain, 
as described earlier in this chapter. These approaches are extremely valuable, but they also appear to be 
more effective in domains with less diversity and scale than is experienced in DoD critical systems.

Complexity and Supply Chains

An additional complicating factor in software assurance for defense is the changing character of 
the architecture and supply structure for software systems generally, including defense software sys-
tems. The changes, which are enabled by advances in the underlying software technologies, particu-
larly related to languages, tools, and runtime architectures, allow for more complex architectures and 
richer and more diverse supply chains. Even routine software for infrastructure users such as banks, 
for example, can involve dozens of major modules from a similar number of vendor and developer 

24  NRC, Daniel Jackson, Martyn Thomas, and Lynette I. Millett, eds., 2007, Software for Dependable Systems, Washington, DC: 
National Academies Press. Available online at http://www.nap.edu/catalog.php?record_id=11923. Accessed August 20, 2010.
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organizations, as well as custom software components developed by multiple independent in-house 
development teams. This is in addition to the defense and government challenges of the customer and 
key stakeholders working at arm’s length from the development teams.

When systems are modular and component-based, there are sometimes opportunities to structure 
the assurance task in an analogously modular fashion. Unfortunately, many critical software attributes 
do not “compose” in this fashion, but there are some that do. For example, type correctness of software 
in modern languages such as Java, C#, and Ada is composable, which permits separate compilation 
of distinct modules. But without composability, the problem of creating “links” in the assurance chain 
can rapidly become intractable. Composability is therefore an important goal in the design of models, 
languages, and analysis capabilities. 

Additionally, modern systems make greater use of complex software frameworks and libraries. This 
is a great success in reuse, but there is also great complexity. Frameworks provide aggregate function-
alities such as graphical user interaction, application server capability, web services support, mobile 
device capabilities, software development environments, enterprise resource planning (ERP), and the 
like. These frameworks embody many of the technical commitments associated with the ecosystems 
described in Chapter 1, and they now appear ubiquitously in larger-scale commercial applications. A 
framework is different from a library, roughly, because it embodies greater architectural commitment, 
including the structure of its associated subsystems, patterns for the flow of control, and representations 
for key data structures. This approach, which is enabled by modern object-oriented technology and 
languages, greatly reduces engineering risk for framework users, because the established frameworks 
embody proven architectures. But it does create some assurance challenges due to the complexity of the 
relationships among the framework, its client code, and potentially framework add-ins that augment 
capability in various ways.

Frameworks and Components

The success of component-based architectures, libraries, and frameworks has led to larger and more 
capable software applications that draw from a much greater diversity of sources for code. This is a 
mixed blessing. On the one hand, highly capable and innovative applications can be created largely 
by selecting ecosystems and assembling components, with a relatively very small proportion of new 
custom design and code development. Often the overall architecture can be highly innovative, even 
when it incorporates subsystems and components drawn from established ecosystems. This approach 
is particularly well suited to incremental methods that facilitate accommodation of the refresh cycles 
for the various constituent components. It also facilitates prototyping, because functional capabilities 
can often be approximated through the assembly process, with additional custom code added in later 
iterations to tailor to more detailed functional needs, as they become better understood. 

Trust

This model, while attractive in many respects, poses significant challenges for assurance. Because 
there are diverse components from diverse sources, there will necessarily be differences in the levels of 
trust conferred on both components and suppliers. This means that, in the parlance of cybersecurity, 
there are potential attack surfaces inside as well as outside the software application and that we must 
support rigorous defense at the interfaces within the application. In other words, the new perimeter is 
within the application rather than around it or its platform. This can imply, for example, that the kinds of 
architecture analyses alluded to in Chapter 3 that relate to modularity and coupling may also be useful 
in assuring that among components in a system (e.g., involving access to data or control of resources) 
there is no “connectivity” other than that which is intended by the architects. 

This new reality for large systems poses great challenges for assurance, because of the potentially 
reduced ability to influence the many sources in the supply chain and also because of the technical 
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challenges of composing assessment results for individual components and subsystems into aggregate 
conclusions that can support an assurance case.

Vendor components are very often accepted on the basis of trust and expectations rather than direct 
analysis. There are both technical and legal barriers to direct analysis that often thwart the ability of 
the DoD to make sound assessments that can lead to reliable conclusions regarding assurance. There 
are several options in these cases. One is to employ a formal third-party assessment process such as 
Common Criteria (ISO 15408), which is in fact derived from the old “Orange Book” process defined in 
the early 1980s. These processes can be expensive and can create delay.25 Additionally, results can be 
invalidated when components must be configured, plug-ins are added, or other small changes are made 
such as adding device drivers to an operating system configuration. There has been much consideration 
of alternate approaches to such assessments. (Detailed consideration of this issue is beyond the scope 
of this report, but consideration is given in the referenced DSB report.26)

Two Scenarios for Software Assurance

To illustrate evaluative techniques and the value of preventive techniques when software is devel-
oped at arm’s length, the committee presents two speculative scenarios for software assurance. In the 
first scenario, evaluators are given full access to an already existing software system that is proposed 
for operational release. The access includes source code for all custom development as well as all associ-
ated development documents. The evaluators also have access to threat experts, and they may have the 
opportunity to interview members of the development team. In the second scenario, a similar system is 
developed, but evaluators have access to the development team from the outset of the project, and the 
development team leaders have specific contractual incentives to obtain favorable judgments of high 
assurance. 

The first scenario, which is fully after the fact, may be read as a strawman for the second and more 
desirable scenario. Unfortunately, an after-the-fact response such as sketched in the first scenario is all 
too often called for in practice—and indeed in some cases may be optimistic due to the opacity of many 
code and service components.

First Scenario—After the Fact

In the informal narrative below, the committee starts with the first scenario and then (under the same 
paragraph headings) explores the potential benefits of the greater access in the second scenario.

•	 Hazard and requirements analysis. The first step for the evaluators is to engage with the threat experts 
and the operational stakeholders for the purpose of identifying the key hazards. These could include 
hazards related to quality attributes: security hazards (e.g., confidentiality, integrity, and access in some 
combination), safety hazards (e.g., related to weapons release), and reliability and performance hazards. 
This will include identification of the principal hazards relating to functional attributes—correctness of 
operation, usability and ergonomic considerations, and compliance with interoperation requirements 

25  The Common Criteria standard (ISO 15408) is generally considered to be more successful for well-scoped categories of 
products such as firewalls and other self-contained devices—as contrasted with general-purpose operating systems, for example. 
Success with Common Criteria is also challenged by dynamic reconfiguration, such as through dynamically loaded libraries, 
device driver additions, and reconfiguration of system settings by users and administrators. Additionally, much of the evaluation 
undertaken through the Common Criteria process is focused on design documents rather than on the code to be executed. There 
may be no full traceability of executing code corresponding to the evaluated design documents.

26  DSB, 2007, Report of the Defense Science Board Task Force on Mission Impact of Foreign Influence on DoD Software, Washington, 
DC: Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics. Available online at http://stinet.dtic.
mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA473661. Last accessed August 20, 2010.
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and, more generally, with standards associated with interlinked systems (ultra-scale, net-centric, system 
of systems, etc). 

•	 Architecture and component identification. The system and its associated documents are then ana-
lyzed to determine the overall intended and as-built system architectures. The intended architecture may 
not correspond exactly to the as-built, but it should be as close as possible, with deviations plausibly 
explainable as design or coding defects. As part of this process, the internal component structure of the 
system is modeled, including the adoption of off-the-shelf components and frameworks from established 
ecosystems. For example, if the system uses web capabilities, then there will likely be major subsystems 
implemented as configured vendor frameworks. The result of this step is an architectural model, an iden-
tification of the principal internal interfaces that mediate interactions among components (frameworks, 
libraries, local services, network-accessed services, custom components, etc.), and an identification of 
significant semantic invariants regarding shared data, critical process flows, timing and performance 
constraints, and other significant architectural features.27

•	 Component-level error and failure modeling. If successful, the architectural analysis yields an under-
standing of principal constraints on the components of the system that relate to attributes such as timing, 
resource usage, data flows and access, user interaction constraints, and potentially many other attributes 
depending on the kind of system. This process, and also the architecture analysis process, is informed 
by documents and developer interviews.

•	 Supply-chain and development history appraisal. Based on information regarding component sourc-
ing and supply-chain management practices, levels of trust are assigned to system components. This 
will inform priority setting in assessment of the individual components. Custom components from 
less-trusted sources may merit greater attention, for example, than off-the-shelf commercial components 
from more trusted sources. A similar analysis should apply to services (e.g., cloud services, software-as-
a-service capabilities, etc.). Open-source components afford visibility into code, rationale, and history. 
They may also afford access to test cases, performance analyses, and other pertinent artifacts. It is also 
helpful, from the standpoint of security threats (see Box 4.1), to assess detailed historical development 
data. This can include not only data regarding producer/consumer interfaces within the supply chain, 
but also, when possible, code check-in records from modern development databases (such as captured 
in open-source systems such as SVN and CVS and similar commercial products and services).

•	 Analysis of architecture and component models. Proceeding on the (as yet unverified) assumption 
that component implementations are consistent with their constraints, the models at the granularity of 
architecture and component interactions can be subject to analysis. Because of the diversity of attributes 
of the models that can trace to the identified failures and hazards, multiple modeling exercises are likely 
to be undertaken, each focusing on particular attributes. When the models can be rendered formally, 
then tools for semi-automated analysis can be used for model checking, theorem proving, static analysis 
(at model level), simulation, and other kinds of mathematically based analysis. If certain models can be 
formalized only partially or not at all, then a more manual approach must be adopted to undertake the 
analysis.

•	 Identify high-interest components. Component analyses can be prioritized on the basis of a com-
bination of trust level (from the supply-chain analysis) and potential role with respect to hazards, or 
“architectural criticality.” Greater attention, for example, would be devoted to a component that handles 
sensitive information and that is custom developed by an unknown or less trusted supplier.

•	 Develop a component evaluation plan. The evaluation plan involves allocating resources, setting 
priorities, identifying assurance requirements, and establishing progress measures on the basis of the 
analyses above.

•	 Assess individual components. This can involve a combination of evaluative techniques. “Static” 

27  This documentation, focused on succinct renderings of traceability and technical attributes, should not be confused with 
the “for the record” documentation often required with development contracts—which may be of limited value in an assurance 
exercise that relies on efficient tool-assisted evaluation.
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techniques, which do not involve executing the code, include inspection (with design documents), 
sound static analysis, and heuristic static analysis. These analyses may involve the construction of vari-
ous kinds of abstract models that can themselves be analyzed to assess various functional and quality 
attributes. This activity is facilitated when models can be made more formal—informally expressed 
models necessarily require people to make interpretations and assessments. The analyses may also 
involve “dynamic” techniques, which involve execution of the code, either in situ in the running system 
(analogous to in vivo testing in life sciences) or in test scaffolds (analogous to in vitro testing in life 
sciences). If the project had used unit testing, then scaffold code would be included in the corpus, and 
this could be adapted and reused. Dynamic methods also include dynamic analysis and monitoring 
and can be used to inform the development of static models to provide assurance in cases where this 
is significant—particularly concurrent and performance-sensitive code. The results of this assessment 
are in the form of an identification of areas of confidence and areas of remaining assessment risk with 
respect to the component interface specifications derived from the architecture analysis.

•	 Select courses of action for custom components. On the basis of the identification of high-interest 
components and the component assessment results, specific options are identified for mitigation of the 
remaining assessment risks. These options could range from acceptance of the component (a positive 
assurance judgment) to wholesale replacement of the component. Intermediate options include, for 
example, containment (“sandboxing” the component behind a façade that monitors and regulates control 
and data flows, either within the process or in a separate process or virtual machine), refactoring, and 
other kinds of rework that might lead to more definitive assessment results. For example, simplifica-
tion of code control structure and localization of state (data) can greatly facilitate analyses of all kinds. 
On the other hand, if there are major issues that afflict multiple components and the value is deemed 
sufficient, then this kind of refactoring and rework could be done at the architectural level, facilitating 
assessment for multiple components. 

•	 Select courses of action for opaque components and services. For opaque components (typically prod-
ucts from vendors), the options are more constrained. In these cases, the extent of the intervention may 
be influenced by the extent of trust vested in the particular vendor in its supply-chain role. When trust 
is relatively low, potential interventions include sandboxing (as noted above) and architectural inter-
vention to assure that the untrusted component does not have access to the most sensitive data and 
control flows. Outsourced services, for example, can also be sandboxed and monitored. An alternative 
is to replace the component or to rework the arm’s-length contractual arrangements to facilitate access 
and evaluation.

•	 Refine system-level assessment. On the basis of the results of the component assessments and inter-
ventions (where appropriate and practical), architecture-level refactoring can sometimes be considered 
as a means to improve modularity, isolating components for which high levels of assurance cannot be 
achieved. Most importantly, the architectural-level models should be reconsidered in the light of the 
information acquired and verified in the foregoing steps. This reconsideration should focus on the 
hazards, quality attributes, and functional requirements as identified in the initial steps. If the compo-
nent- and architecture-level assurances do not combine to yield sufficient assurances for the hazards 
identified, then more drastic options need to be contemplated, including canceling the project, redefin-
ing the mission context to reduce the unaddressed hazards, revising initial thresholds regarding system 
risks, or undertaking a more intensive reengineering process on the offending components of the system 
and/or its overall architecture. As noted in Chapter 3, reworking architecture commitments at this late 
stage can be very costly, because there can be considerable consequent rework in many components.

This scenario is intended to illustrate not only the potential challenges in an evaluation process, but 
also some of the added costs and risks that exist due to insufficiency either of effort in the “preventive” 
category or of evaluator involvement in the development phase. In the second scenario, the committee 
briefly considers how these steps might be different were the evaluators and developers to work in 
partnership during the development process rather than after the fact. 
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Second Scenario—Preventive Practices

The steps are the same as those for the first scenario, but the descriptions focus on the essential dif-
ferences with the after-the-fact scenario above. This scenario should make evident the value of incentives 
in the development process for “design for assurability.” 

•	 Hazard and requirements analysis. This step is similar, but performed as part of the overall scop-
ing of the system. Because architecture is such a primary driver of quality attributes and assurance (as 
illustrated above), in this preventive scenario, a savvy manager would couple the architecture defini-
tion with the hazard analysis and, if possible, limit early commitment regarding specific functional 
characteristics to broad definitions of the “scope” of the system (see Chapter 2). At this stage, the first 
set of overall progress metrics is defined, and these could include credit to be allocated for resolving 
engineering risks associated with assurance. These metrics can also relate to compliance with standards 
associated with interlinked systems, as noted in the first scenario.

•	 Architecture and component identification. As noted earlier, the architecture definition is coupled 
with hazard identification and scope definition. The exceedingly high engineering risk for assurance 
and architecture in the after-the-fact scenario (assuming innovative architectural elements are required) 
is replaced with an up-front process of architecture modeling, supported by various early-validation 
techniques such as simulation, prototyping, and direct analysis (such as with model checking). Certain 
detail-level architectural commitments can be made incrementally. Progress metrics related to assur-
ance-related engineering risk are refined and elaborated.

•	 Component-level error and failure modeling. A key difference is that the component-level modeling, 
combined with the supply-chain appraisal, provides an early feedback mechanism regarding engineer-
ing risks in the evolving architecture design. Risks can be assessed related not only to quality attributes 
and technical feasibility, but also to sourcing costs and risks. For example, choices might be made regard-
ing opaque commercial components from a trusted source, custom components, wrapped untrusted 
components, and open-source components that afford stakeholders both visibility and the possibility of 
useful intervention (e.g., adding test cases, adapting APIs, adding features, etc.). This process can also 
lead to the early creation of unit test cases, analysis and instrumentation strategies, and other quality-
related interventions in the component engineering process. Process metrics defined in earlier stages 
can inform allocation of resources in this stage of the process. The metrics are also refined as part of the 
incremental development process.

•	 Supply-chain and development history appraisal. See above. The committee notes that it is sometimes 
asserted that offshore development is intrinsically too dangerous. However, one could argue that badly 
managed onshore development by cleared individuals may be more dangerous than offshore develop-
ment with best practices and evidence creation along with coding. A well-managed offshore approach 
may be feasible for many kinds of components when elements of the evolving best practice are adopted, 
such as (1) highly modular architectures enabling simplicity in interface specifications and concurrent 
development, (2) unit testing, regression testing, and code analysis, with results (and tests) delivered as 
evidence along with the code, (3) frequent builds, (4) best-practice configuration control, and (5) agile-
style gating and process management.28 Metrics can relate to a combination of adoption of best practices 
and production of separately verifiable evidence to support any assurance claims. As noted above, full 
line-by-line historical tracking of changes to a code base is now commonplace for development projects 
of all sizes. A key benefit of such tracking is that it provides full traceability not only among artifacts, 
but also to individual developers, which is useful for security and to assure that individual developers 
are fully up-to-date with best practices.

28  Michael A. Cusumano, Alan MacCormack, Chris F. Kemerer, and William Crandall, 2009, Critical Decisions in Software 
Development: Updating the State of the Practice, IEEE Software 26(5):84-87. See also Alan MacCormack, Chris F. Kemerer, Michael 
Cusumano, and Bill Crandall, 2003, “Trade-offs Between Productivity and Quality in Selecting Software Development Practices,” 
IEEE Software 20(5):78-85. 
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•	 Analysis of architecture and component models. This becomes part of the iterative early-stage process 
of refining architecture, quality attribute goals, functional scoping, and sourcing. If there are portions 
of the configuration that may create downstream challenges for evaluators, this is the opportunity to 
revisit design decisions to facilitate evaluation. For example, an engineer might suggest a change in 
programming language for a component in order to get a 5 percent speed up. At this stage of the pro-
cess, that proposal can be considered in the light of how it might influence assurance with respect to 
quality attributes, interface compliance, correct functionality, and other factors. The decision could be 
made not to change the programming language, but rather to incentivize the vendor to make the next 
set of improvements in its compiler technology. These decisions are made using a multi-criteria metric 
approach, with criteria and weightings informed by the earlier stages.

•	 Identify high-interest components. Regardless of the front end of the process, there will be a set of 
high-interest components. Ideally, however, as a result of architecture decisions, the components in this 
category are not also opaque and untrusted. Regardless, components are prioritized on the basis of mea-
sured assurance-related engineering risk, with metrics as set forth in the earlier stages. This assessment 
will account for ongoing improvements in development technologies (e.g., languages, environments, 
traceability and knowledge management), assurance tools (e.g., test, inspection, analysis, and monitor-
ing support), and modeling (for various quality attributes including usability). 

•	 Develop a component evaluation plan. Allocate resources, set priorities, and identify assurance 
requirements on the basis of the analyses above. In this preventive scenario, this plan is largely a conse-
quence of the early decisions regarding architecture, sourcing, hazards, and functional scope. Metrics are 
defined for resolution of engineering risk in all components (but particularly high-interest components), 
so progress can be assessed and credit assigned.

•	 Assess individual components. As above, this involves a combination of many different kinds of 
techniques. In the preventive scenario, component development can be done in a way that delivers not 
only code, but also a body of evidence including test cases, analysis results, in-place instrumentation 
and probes, and possibly also proofs of the most critical properties. (These proofs are analogous to 
what is now possible for type-safety and encapsulation integrity, which is now a ubiquitous analysis 
that is composable and scalable.) This supporting body of evidence that is delivered with code enables 
acceptance evaluators to verify claims very efficiently regarding quality attributes, functionality, or other 
properties critical to assurance. Metrics are developed to support co-production of component code and 
supporting evidence.

•	 Select courses of action for custom components. See above. 
•	 Select courses of action for opaque components and services. For existing vendor components, the same 

considerations apply as in the previous scenario. If new code is to be developed in a proprietary envi-
ronment, then there is the challenge of how to make an objective case (not based purely on trust) that 
the critical properties hold. Existing approaches rely on mutually trusted third parties (as in Common 
Criteria), but there may be other approaches whereby proof information is delivered in a semi-opaque 
fashion with the code.29 Additionally, the proprietary developer could develop the code in a way that is 
designed to operate within a sandbox, in a separate process, or in another container—in this approach, 
the design is influenced by the need to tightly regulate control and data flows in and out of the contained 
component. Metrics would weight various criteria, with a long-term goal of diminishing the extent of 
reliance on trust vested in commercial vendors in favor of evidence production in support of explicit 
“assurability” claims.

•	 Refine system-level assessment. Given the high risks and costs of architectural change, in a preven-
tive scenario, any adjustments to architecture are done incrementally as part of the overall process. 
Metrics would relate to the extent of architectural revisions necessary at each stage of the process.

29  There is a wealth of literature on proof-carrying code and related techniques.
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Conclusion

A key conclusion from these scenarios is the high importance of three factors: (1) The extremely 
high value of incorporating assurance considerations (including security considerations—see Box 4.1) 
into the full systems lifecycle starting with conceptualization, throughout development and acceptance 
evaluation, and into operations and evolution. (2) The strong influence of technology choices on the 
potential to succeed with assurance practices. (3) As a consequence, the value to DoD software produc-
ibility that comes from enhancements to critical technologies related to assurance, including both what 
is delivered (programming languages, infrastructure) and what is used during development (models 
and analytics, measurement and process support, tools and environments).

Recommendation 4-1: Effective incentives for preventive software assurance practices and produc-
tion of evidence across the lifecycle should be instituted for prime contractors and throughout the 
supply chain. 

This includes consideration of incentives regarding assurance for commercial vendor components, 
services, and infrastructure included in a system.

As illustrated in the scenario, when incentives are in place, there are emerging practices that can 
make significant differences in the outcomes, cost, and risk of assurance. The experience at Microsoft 
with the Lipner-Howard Security Development Lifecycle (SDL)30 reinforces this—the lifecycle not only 
leads to better software but also incentivizes continuous improvement in assurance technologies and 
practices.

When ecosystems, vendor components, open-source components, and other commerical off-the-shelf 
(COTS) elements are employed, assurance practices usually necessitate the DoD to constantly revisit 
selection criteria and particular choices. The relative weighting among the various sourcing options, 
from an assurance standpoint, will differ from project to project, based on factors including transpar-
ency of the development process and of the product itself, either to the government or to third-parties. 
This affords opportunity to create incentives for commercial vendor components to include packaged 
assurance-related evidence somewhere between the two poles of “as is” and “fully Common Criteria 
certified.” Advancement in research and practice could build on ideas already nascent in the research 
community regarding ways that the evidence could be packaged to support quality claims and to protect 
trade secrets or other proprietary technology embodied in the components.

Recommendation 4-2: The DoD should expand its research focus on and its investment in both 
fundamental and incremental advances in assurance-related software engineering technologies and 
practices.

This investment, if well managed, could have broad impact throughout the DoD supply chain. When 
both recommendations are implemented, a demand-pull is created for improved assurance practices 
and technologies. 

Recommendation 4-3: The DoD should examine commercial best practices for more rapidly tran-
sitioning assurance-related best practices into development projects, including contracted custom 
development, supply-chain practice, and in-house development practice. 

30  Steve Lipner and Michael Howard, 2006, The Security Development Lifecycle: A Process for Developing Demonstrably More Secure 
Software, Redmond, WA: Microsoft Press.
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Several leading vendors have developed explicit management models to accelerate the development 
of assurance-related technologies and practices, to validate them on selected projects, and to transition 
them rapidly into broader use.31

31  Microsoft is well known for its aggressive use of development practices including process (the Security Development Lifecycle 
(SDL) noted earlier—see http://msdn.microsoft.com/en-us/library/ms995349.aspx) and analysis tools (such as SLAM, PreFast, 
and others—see, for example Thomas Ball, 2008, “The Verified Software Challenge: A Call for a Holistic Approach to Reliability,” 
pp. 42-48 in Verified Software: Theories, Tools, Experiments, Bertrand Meye and Jim Woodcock, eds. Berlin: Springer-Verlag).
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5

Reinvigorate DoD Software Engineering Research

In this chapter, the committee summarizes and recommends seven technology research areas as 
critical to the advancement of defense software productibility. These seven areas were identified by the 
committee on the basis of the following considerations:

•	 Priorities identified from the analysis reported in the foregoing chapters: architecture, incremental 
process, measurement, and assurance. This builds on extensive interviews with leaders from the DoD 
and industry and research regarding both challenges and potential opportunities for the DoD.

•	 Areas of potential technology and practice that might not otherwise develop sufficiently rapidly 
without direct investment from the DoD. Although other agencies are investing in areas related to soft-
ware producibility, the focus and approach to investment do not sufficiently address the priorities as 
identified above.

•	 Potential for a fleshed-out program proposal to satisfy research management “feasibility” crite-
ria such as the Heilmeier questions (see Box 5.1), which identify a set of “tests” for research program 
proposal�—that is, areas where investment most likely leads to a return that benefits the DoD.

•	 Areas not sufficiently addressed by other major federal research sponsors, including the Network-
ing and Information Technology Research and Development (NITRD) agencies. 

Prefacing this summary of areas recommended for future research investment is an exploration of 
the role of academic research in software producibility and a discussion of the impacts of past invest-
ments. The chapter also includes a brief discussion regarding effective practice for research program 
management to maximize impact while managing overall programmatic risk.� 

�  There are many versions of the questions; one such version can be found in Box 5.1.
�  Indeed, there is a parallel between programmatic risk in the development of innovative software and programmatic risk 

in research program management. More important, perhaps, is the analogy between engineering risk in innovative software 
development and management risk in research program management. Several kinds of research management risk and various 
approaches to management risk mitigation are identified in Chapter 4 of National Research Council (NRC), 2002, Information 
Technology Research, Innovation, and E-Government, Washington, DC: National Academies Press. Available online at http://www.
nap.edu/catalog.php?record_id=10355. Last accessed August 20, 2010.
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The role of academic research in software producibility

The academic research community—along with a small number of industry research groups—has 
traditionally addressed many of the core technical problems related to software producibility. The 
academic value proposition has several direct components: The first is workforce. University gradu-
ates are the core of the engineering workforce. The most talented and highly trained graduates—those 
who contribute to innovation in a primary way—tend to come from PhD programs. More generally, 
the research community generates a steady supply of people—graduates at all levels—educated at the 
frontiers of current knowledge in important areas of specialization. The economics of these programs 
depend on externally funded research projects. That is, unlike bachelor’s and master’s enrollments, the 
production of PhD graduates by universities is in direct proportion to sponsored research. It is perhaps 
too obvious to point this out, but cleared individuals with top technical qualifications are most likely 
to be graduates of U.S. universities. 

The second component is new knowledge. The style of computer science and software research, histori-
cally, has focused on the creation of scientific understanding that is both fundamental and applicable. 
This is in keeping with the “boundlessness” of software as described in Chapter 1.� Although industry 
plays a limited role in performing research relevant to fundamental open problems, there is no institution 
in the United States other than the research community, located primarily at universities, that focuses 
on broad and often non-appropriable advancements to knowledge that are directly relevant to practice. 
Indeed, major corporate labs that have historically supported non-appropriable and open-publication 
research as a significant part of their overall portfolios (such as Bell Labs and Xerox PARC) have been 
restructured or scaled back in recent years. This scaling back of private-sector research is due to numer-
ous factors, including a loss by many players of safe monopoly status, analogous to that which enabled 
Bell Labs to thrive. This creates greater internal pressure on laboratory managers to create measurable 
return on investment (ROI) cases for research projects. This is particularly challenging for software 
producibility research, which is often focused on creating new measures of “return” rather than on 
incremental advances according to readily measurable criteria. This increases the significance of the 
role of academic research, government laboratories, and federally funded research and developments 
centers (FFRDCs). This is not to say that major research effort in software producibility is not underway 
in industry. At Microsoft and IBM, particularly, there is aggressive and forward-looking work in this 
area that is having significant influence across the industry.

Academic research and development (R&D) is also a major generator of entrepreneurial activity in 
information technology (IT).� The small companies in that sector have an important role in developing 
and market testing new ideas. The infrastructure to support these ventures is an important differentiator 
of the U.S. innovation system. This infrastructure includes university intellectual property and people 
supported by university R&D projects. These companies may sometimes disrupt the comfortable market 
structures of incumbent firms, but arguably not in the same way as do competition or foreign innova-
tion. Regardless, weak incumbents tend to fall by the wayside when there is any disruption. Strong 
incumbents become stronger. This constant disruption is a characteristic of the more than half-century 
of IT innovation. It is essential that the DoD itself be effective as a strong incumbent that is capable of 
gaining strength through disruptive innovations, rather than being a victim (see below). The intelligence 
community’s Disruptive Technology Office (DTO, now part of Intelligence Advanced Projects Research 
Agency�) can be presumed to have been founded upon this model. 

A third area of value provided by university-based R&D (and industrial lab R&D as well) is surprise 
reduction. Computing technology is continuing to experience very rapid change, at a rate that has been 

�  This is the fundamental yet eventually useful knowledge in what Donald Stokes has called Pasteur’s Quadrant. See Donald 
E. Stokes, 1997, Pasteur’s Quadrant—Basic Science and Technological Innovation, Washington, DC: Brookings Institution Press.

�  The committee uses “information technology” or “IT” to refer to the full range of computing and information technology areas 
in the scope of the NITRD multi-agency coordination activity (see http://www.nitrd.gov/ Last accessed August 20, 2010). 

�  See http://www.iarpa.gov/. Last accessed August 20, 2010.
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BOX 5.1  
Heilmeier Criteria

When George Heilmeier was DARPA director in the mid 1970s he developed a set of pithy questions to 
ask research program managers when they proposed new program ideas. That set of questions has persist-
ed, and it continues to be applied in various forms by research managers everywhere. Here is a composite 
rendering of the questions, along with some commentary regarding research program management.

1.	 What are you trying to do? Explain objectives using no jargon. The scope of the project must be defined, 
as well as the key stakeholders in the outcome. The purpose of “no jargon,” in part, is to assure that the 
scope and value can be described in ways that individuals outside the immediate field can appreciate the 
context and value of what is proposed.

2.	 How is it done today? What are the limits of current practice? This is an accounting of the baseline state, 
the value it delivers, the limits on what can be done in the present configuration, and, to some extent, the 
pain experience as a consequence of those limits.

3.	 What’s new in your approach? Why do you think it will be successful? Often the novelty is less in the 
form of a dramatically “new idea,” but rather in the convergence of existing ideas and new developments 
elsewhere in the field. A cynical view of “cloud computing,” for example, is that it is a delivery on the dream 
of “utility computing” articulated in the early 1960s at the dawn of the era of timesharing. Cloud, of course, 
takes this idea many steps forward in scalability, capability, and other ways. In other words, it is less impor-
tant that the idea be “novel,” but rather timely, potentially game changing, and feasible. Feasibility, in this 
context, does not mean free of risk, but rather that the dependencies on infrastructure and other elements 
of the package are realistic. Feasibility also means that there are potential research performers who have the 
means and motive to engage on the topic. For academic research, this means the ability to build a capable 
team of PhD students, engineering staff as required, potential transition partners, collaborators at other 
institutions, etc.

4.	 If you’re successful, what difference will it make? To whom? This is an identification of stakeholders, and 
in addition an indication of potential pathways from research results to impact. For many research projects 
related to computing and software, those pathways can be complex. These complexities are discussed in the 

NRC “tire tracks” reports.� For software, the path often connects the research results to the DoD through 
the development of commercial capabilities, where private investment takes a promising research idea and 
matures it to the point that it can be adopted by development teams. This adoption could be by software 
development teams in defense contractors or it could be by development teams creating commercial 
products or services. For example, the reliability of DoD desktop computers undeniably was improved, 
quite dramatically, as a result of the improvements made by Microsoft to the process of development and 
evaluation for device driver code enabled by the SLAM tool (described elsewhere in this chapter), which 
in turn were enabled by research sponsorship from DARPA and NSF. In addition to defining the impact, 
there is value in understanding not only those stakeholders who will benefit, but also those who may be 
disrupted in other ways.

5.	 What are the risks and the payoffs? This is not only an accounting of the familiar “risk/reward” model, 
but also an indication of what are the principal uncertainties, how (and when) they might be mitigated, and 
what are the rewards for success in resolving those uncertainties.� 

6.	 How much will it cost? How long will it take? An important question is whether there are specific cost 
thresholds. For certain physics experiments, for example, either the apparatus can be built, or not. But for 
other kinds of research there may be more of a “gentle slope” of payoff as a function of level of effort. The 
answer to the questions of cost and schedule, therefore, should not only be specific numbers, but also, in 
many cases, should provide a description of a function that maps resources to results.

7.	 What are the midterm and final “exams” to assess progress? It is essential that there be ways to assess 
progress, not only at the end of a project, but also at milestones along the way. (This is analogous to the 
idea of “early validation” of requirements, architecture, design, etc., as a way to reduce engineering risk in 
software.) In many research areas, quantitative measures of progress are lacking or, indeed, their formula-
tion is itself the subject of research. For this reason, in some challenging research areas the identification 

�  See National Research Council (NRC), 1995, Evolving the High Performance Computing and Communications Initiative, 
Washington, DC: National Academy Press; and NRC, 2003, Innovation in Information Technology, Washington, DC: National 
Academies Press.

 2 An inventory of “engineering” risks related to research program management is in the NRC report on E-Govern-
ment National Research Council, 2002, Information Technology Research, Innovation, and E-Government, Washington, DC: 
National Academies Press. Available online at http://www.nap.edu/catalog.php?record_id=10355. Last accessed August 3, 
2010.

undiminished for several decades and perhaps is accelerating because of a now-global involvement in 
advancing IT. Given the rapid change intrinsic to IT, the research community (in academia and in indus-
try, especially start-up companies) serves not only as a source of solutions to the hardest problems, a 
source of new concepts and ideas, and a source of trained people with high levels of expertise, but also 
as a bellwether, in the sense that it anticipates and provides early warning of important technological 
changes. For software, the potential for surprise is heightened by a combination of the rapid growth of 
globalization, the concurrent movement up the value chain of places to which R&D has been outsourced, 
and the explicit investments from national governments and the European Union in advancing national 
technological capability. Given the role of externalities in IT economics, it is not unreasonable to expect 
the innovation center of gravity to change rapidly in many key areas, which could shift control in criti-
cal areas of the technology ecosystems described above. This is already happening in several areas of 
IT infrastructure, such as chip manufacturing. In this sense, the research community has a critical role 
in defense-critical areas that are experiencing rapid change. A consequence of this role is the availability 
of top talent to address critical software-related defense problems as they arise.

The fourth component of the academic R&D value proposition is non-appropriable invention, as 
described in Chapter 1. This is one of the several forms of innovation carried out by the university 
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BOX 5.1  
Heilmeier Criteria

When George Heilmeier was DARPA director in the mid 1970s he developed a set of pithy questions to 
ask research program managers when they proposed new program ideas. That set of questions has persist-
ed, and it continues to be applied in various forms by research managers everywhere. Here is a composite 
rendering of the questions, along with some commentary regarding research program management.

1.	 What are you trying to do? Explain objectives using no jargon. The scope of the project must be defined, 
as well as the key stakeholders in the outcome. The purpose of “no jargon,” in part, is to assure that the 
scope and value can be described in ways that individuals outside the immediate field can appreciate the 
context and value of what is proposed.

2.	 How is it done today? What are the limits of current practice? This is an accounting of the baseline state, 
the value it delivers, the limits on what can be done in the present configuration, and, to some extent, the 
pain experience as a consequence of those limits.

3.	 What’s new in your approach? Why do you think it will be successful? Often the novelty is less in the 
form of a dramatically “new idea,” but rather in the convergence of existing ideas and new developments 
elsewhere in the field. A cynical view of “cloud computing,” for example, is that it is a delivery on the dream 
of “utility computing” articulated in the early 1960s at the dawn of the era of timesharing. Cloud, of course, 
takes this idea many steps forward in scalability, capability, and other ways. In other words, it is less impor-
tant that the idea be “novel,” but rather timely, potentially game changing, and feasible. Feasibility, in this 
context, does not mean free of risk, but rather that the dependencies on infrastructure and other elements 
of the package are realistic. Feasibility also means that there are potential research performers who have the 
means and motive to engage on the topic. For academic research, this means the ability to build a capable 
team of PhD students, engineering staff as required, potential transition partners, collaborators at other 
institutions, etc.

4.	 If you’re successful, what difference will it make? To whom? This is an identification of stakeholders, and 
in addition an indication of potential pathways from research results to impact. For many research projects 
related to computing and software, those pathways can be complex. These complexities are discussed in the 

NRC “tire tracks” reports.� For software, the path often connects the research results to the DoD through 
the development of commercial capabilities, where private investment takes a promising research idea and 
matures it to the point that it can be adopted by development teams. This adoption could be by software 
development teams in defense contractors or it could be by development teams creating commercial 
products or services. For example, the reliability of DoD desktop computers undeniably was improved, 
quite dramatically, as a result of the improvements made by Microsoft to the process of development and 
evaluation for device driver code enabled by the SLAM tool (described elsewhere in this chapter), which 
in turn were enabled by research sponsorship from DARPA and NSF. In addition to defining the impact, 
there is value in understanding not only those stakeholders who will benefit, but also those who may be 
disrupted in other ways.

5.	 What are the risks and the payoffs? This is not only an accounting of the familiar “risk/reward” model, 
but also an indication of what are the principal uncertainties, how (and when) they might be mitigated, and 
what are the rewards for success in resolving those uncertainties.� 

6.	 How much will it cost? How long will it take? An important question is whether there are specific cost 
thresholds. For certain physics experiments, for example, either the apparatus can be built, or not. But for 
other kinds of research there may be more of a “gentle slope” of payoff as a function of level of effort. The 
answer to the questions of cost and schedule, therefore, should not only be specific numbers, but also, in 
many cases, should provide a description of a function that maps resources to results.

7.	 What are the midterm and final “exams” to assess progress? It is essential that there be ways to assess 
progress, not only at the end of a project, but also at milestones along the way. (This is analogous to the 
idea of “early validation” of requirements, architecture, design, etc., as a way to reduce engineering risk in 
software.) In many research areas, quantitative measures of progress are lacking or, indeed, their formula-
tion is itself the subject of research. For this reason, in some challenging research areas the identification 

�  See National Research Council (NRC), 1995, Evolving the High Performance Computing and Communications Initiative, 
Washington, DC: National Academy Press; and NRC, 2003, Innovation in Information Technology, Washington, DC: National 
Academies Press.

 2 An inventory of “engineering” risks related to research program management is in the NRC report on E-Govern-
ment National Research Council, 2002, Information Technology Research, Innovation, and E-Government, Washington, DC: 
National Academies Press. Available online at http://www.nap.edu/catalog.php?record_id=10355. Last accessed August 3, 
2010.

research community. In a market economy, with internal ROI cases prerequisite for R&D investment 
inside firms, this is a role most appropriate to universities and similar institutions—of course firms often 
carry out or sponsor such innovation for a variety of reasons, but it is not their core purpose. For IT in 
particular, such R&D is essential to national competitiveness and to increases in market-wide value. 
Although the openness of university research is sometimes considered a negative factor with respect 
to the advancement of technology for national security, it is also the case that universities have unique 
incentives, unlike industry, to advance the discipline even when the hard-won results are non-appropri-
able or difficult to fully appropriate. As noted above, it is evident from the history of the field that the 
advancement of IT and software producibility disproportionately depends on this kind of technology 
advance. Of course, universities also create an enormous body of appropriable intellectual property that 
has the potential to be transitioned into practice. 

Finding 5-1: Academic research and development continues to be the principal means for develop-
ing the most highly skilled members of the software workforce, including those who will train the 
next generation of leaders, and for stimulating the entrepreneurial activity that leads to disruptive 
innovation in the information technology industry. Both academic and industry labs are creating 
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the fundamental advances in knowledge that are needed to drive innovation leadership in new 
technologies and to advance software technologies that are broadly applicable across industry and 
the DoD supply chain.

DoD Influence on Academic R&D

The overall directions and priorities for sponsored research that leads to university-originated 
invention are greatly influenced by funding levels and agency priorities. For example, the Defense 
Advanced Research Project Agency’s (DARPA’s) deliberately strong relationship with the IT research 
community, which began in the 1960s and endured for nearly 40 years, has had profound influence on 
IT research priorities, the overall culture of computer science research, and the massive economic and 
national outcomes. This is documented in multiple NRC reports relating to the innovation pipeline for 
IT, which trace the origins of a broad set of specific IT innovations, each of which has led to a multi-
billion dollar market.�

Data available from NITRD and other sources indicate that there has been a significant reduction 
in federally sponsored research related to software producibility as well as to high-confidence software 
and systems (see Box 1.5). Furthermore, it is the committee’s impression that in recent years many of the 
researchers in these areas have moved into other fields or scaled down their research efforts as a result 
of, among other things, the DoD’s having shifted funding away from software-related R&D, apparently 
on the assumption that industry can address the problems without government intervention. As stated 
previously, industry generally has less incentive to produce the fundamental advances in knowledge 
that enable disruptive advances in practice, building on fundamental advances but less often creating 
them. The impact of R&D cutbacks generally (excluding health-related R&D) has been noted by the top 
officers of major IT firms that depend on a flow of innovation and talent.

Academic R&D, Looking Forward

There are some challenges to proceeding with a new program for academic R&D related to soft-
ware-intensive systems producibility. These challenges relate generally to saliency, realism, and risk. 
University researchers and faculty tend to be aware of broadly needed advances, but they do not always 
have adequate visibility into the full range of issues created by leading demands for large-scale, complex 
industrial and military systems. This awareness is hindered by many things, including national security 
classification, restricted research constraints, professional connectivity, and cost, in the sense of time and 
effort required to move up the learning curve. In a different domain, DARPA took a positive step in 
this regard by initiating the DARPA Computer Science Study Group, wherein junior faculty are given 
clearances and so are able to gain direct exposure to military challenge problems. Several specific DoD 
programs have undertaken similar efforts to give faculty a domain exposure, often with great success. 
One example from the 1990s is the Command and Control University (C2U) created by the Command 
Post of the Future (CPOF) program, which not only gave researchers access to military challenges, but 
also led to collaborations yielding new innovation in system concepts.� 

With respect to ensuring that researchers have access to problems at scale, companies such as Google 
and Yahoo!, and national laboratories such as Los Alamos, have developed collaborative programs to 
expose faculty and graduate students to high-performance computing systems, large datasets, and the 
software approaches being taken with those systems. These companies, like the DoD, have worked out 

�  See NRC, 2003, Innovation in Information Technology, Washington, DC: National Academies Press. Available online at http://
www.nap.edu/catalog.php?record_id=10795. Last accessed August 20, 2010. Also see the predecessor report NRC, 1995, Evolv-
ing the High Performance Computing and Communications Initiative, Washington, DC: National Academies Press. Available online at 
http://www.nap.edu/catalog.php?record_id=4948. Last accessed August 20, 2010.

�  The committee understands that prototype systems from this program are now deployed in Iraq.
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a level of exposure that enables researchers to engage productively without compromising core intel-
lectual property. The DoD has a track record of success in this regard as well.

For software producibility research, a different kind of access is needed. Certainly, the success of 
large-scale production-quality open source has afforded researchers great opportunity not only to experi-
ment with large code bases, but also to undertake longitudinal and organizational analyses of larger 
projects. This has been enabled by the sophistication of the tools—code management systems, defect 
databases, designs and models, test cases. These projects are comparable in scale and functionality to 
commercial software and have greatly assisted the software engineering community in its research. 
Additionally, commercial firms are affording researchers greater access to proprietary code bases for 
experimentation and analysis. An early and significant example is work by Gail Murphy in which 
she assessed consistency of an as-built code base with architectural intent.� She studied both an open 
source project and a proprietary project. If security and commercial ownership issues could be resolved 
(perhaps by clearing selected researchers), members of the research community would benefit greatly 
from access to DoD-related artifacts, including surrogates and “sanitized” artifacts that omit critical 
algorithms and/or data. Regardless of access, the committee recommends improved data collection to 
support analysis (see Recommendation 2-2). 

Investing in Research in Software Producibility

The Impact of Past Investments

Software development has changed and, for the most part, improved considerably during the past 
several decades. Software systems have grown in size and complexity and are now an integrated com-
ponent of every aspect of our society, including finance, transportation, communication, and health care. 
Since the 1960s, Moore’s Law has correctly predicted the tremendous growth in the number of transistors 
on chips and, generally speaking, the extent of hardware-delivered computing power. An analogous 
growth has occurred in the size and power of software systems if machine-level instructions, rather 
than transistors, are the measure of growth.�,10,11 Today’s systems are built using high-level languages 
and numerous software library components, developed using sophisticated tools and frameworks, and 
executed with powerful runtime support capabilities.

Research in software engineering, programming technologies, and other areas of computer science 
has been a catalyst for many of these advances. Nearly all of this research was undertaken at research 
universities as part of federal programs led by DARPA, the National Science Foundation (NSF), and 
the Service basic (category 6.1) research programs of the Office of Naval Research, Air Force Office of 
Science Research, and Army Research Office. 

Three illustrations of the impact of federal sponsorship (in academia and industry) that is specifi-
cally related to software engineering are presented in Box 5.2. These illustrations, drawn from a study 
undertaken by Osterweil et al.,12 complement the analyses of the NRC reports cited above relating to 
research impacts on practice and on the IT economy. 

�  Gail Murphy, 1995, “Software Reflexion Models: Bridging the Gap Between Source and High-level Models,” Proceedings of the 
Third ACM SIGSOFT Symposium on Foundations of Software Engineering, Washington, DC, October 10-13, pp. 18-28.

�  Barry Boehm, 1999, “Managing Software Productivity and Reuse,” IEEE Computer September, 32(9):111-113.
10  Mary Shaw, 2002, “The Tyranny of Transistors: What Counts about Software?” Proceedings of the Fourth Workshop on Econom-

ics-Driven Software Engineering Research, IEEE Computer Society, Orlando, FL, May 19-25, pp. 49-51.
11  Barry Boehm, 2006, “A View of 20th and 21st Century Software engineering,” Proceedings of the 28th International Conference 

on Software Engineering, ACM, Shanghai, China, May 20-28, pp. 12-29.
12  Leon J. Osterweil, Carlo Ghezzi, Jeff Kramer, Alexander L. Wolf, 2008, “Determining the Impact of Software Engineering 

Research on Practice,” IEEE Computer 41(3):39-49.
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Challenges and Opportunities for Investment

Notwithstanding the enormous payoffs from past investments in software research, making the case 
for future research investments in software producibility faces a number of challenges, rooted largely 
in the nature of software development as a field of study. All scientific research fields face challenges 
in justifying future investments, but the unique characteristics of software and the dynamics of knowl-
edge creation in software producibility create particular challenges for this field. There are, however, 
opportunities based on developments in the technology, in the overall environment of practice, and in 
the improvement of scientific practice. These challenges and opportunities influence the application 
of the criteria summarized at the outset of this chapter. Below are a few examples of influences, both 
positive and negative:

•	 Maturation of the discipline. Many researchers will agree that, as a discipline, software engineering 
research has matured considerably in the past decade. This is a consequence of both improved research 
methods and improved circumstances. The circumstances include a vast improvement in access to large 
bodies of code, both through large-scale open-source projects and through improvement in researcher 
access to proprietary code bases. An additional circumstance is the emergence of highly capable tools, 
including source-code management systems, development environments, analysis frameworks, etc., that 
afford researchers opportunity to conduct experiments at meaningful levels of scale. The effect is that it is 
more often possible for software engineering researchers to give satisfactory responses to the Heilmeier 
questions (see Box 5.1). At the same time, software engineering practice remains behind the state of the 
art in research. As discussed in Chapter 1, software development remains more akin to a craft than to 
an engineering discipline, in which the productivity and trustworthiness of system development rest 
on fundamental and well-validated principles, practices, and technologies. And it is still the case that 
even sanitized representative software artifacts are not available for academic analysis in many defense 
areas.

•	 Diffusion pathways and timescale. Many of the results of software research are broadly applicable 
and provide for enabling technologies and methods useful in a range of specific application domains. 
Breadth of applicability is valued in research, but it is also double-edged from the standpoint of spon-
sors. First, there is a greater chance that results may diffuse to adversaries as well as to collaborators. 
Second, there is a commons problem: because the benefits are broad, no particular stakeholder can justify 
the investments needed to produce them. Thus, for example, DoD Service R&D programs tend to focus 
much more on Service-specific technologies than on common-benefit software technology. Twenty years 
ago, the Service Laboratories played a significant part in maturing and transitioning software produc-
ibility technology, but the “tragedy of the commons” has virtually dried up this key channel. Moreover, 
advances in software producibility very often are enabling advances rather than being advances of immediate 
use in particular products. Better techniques for identifying, diagnosing, and repairing software faults, 
for example, enable production of better systems but are not directly used in particular software prod-
ucts. The value of such advances is thus often hard to quantify precisely for any single advance, or from 
the perspective of any single program. Yet when integrated over longer periods of time and in terms of 
impacts on many engineering products, the benefits of the stream of advances emerging from software 
research are very clear (as summarized above). In the case of defense software producibility, there are 
clear drivers of defense software “leading demand,” and there are ways that the DoD can invest in and 
realize benefits earlier and more effectively than can potential adversaries. Moreover the DoD remains 
a major beneficiary of the longer-term production of software producibility knowledge. 

•	 Novelty of ideas. It is noted earlier in this chapter that cloud computing, taken broadly, is really a 
manifestation of a half-century-old idea of “utility computing” that has just now become feasible due 
to the positions of the various exponential curves that model processor, storage, and communications 
capabilities and costs—as well as enabling engineering, management, and business innovation. This 
account is a bit simplistic, obviously, but it makes an essential point: The specific novelty of an idea 
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BOX 5.2  
Three Examples of the Impact of Past Investments

1. From bug detection to lightweight formal methods. Bugs have plagued software since before there 
were computers,� and researchers have been actively working on developing tools to help detect and 
prevent errors in software systems for at least half a century. Early compilers focused on syntactic er-
rors and simple debugging support, but soon tools were developed to detect more complex semantic 
errors. Simple definition-reference bug detection techniques�,� were followed by more sophisticated 
approaches.�,�,� Programming languages such as Ada, Java, and C# incorporated some of these concepts 
directly into the language, and thus, for example, checked for array indexes being out of bounds dur-
ing compilation and added runtime checking only when necessary. This work laid the foundation for a 
range of model checking and program analysis tools that are now emerging at companies like Micro-
soft and Google as these companies increase their concern for secure, high-quality systems. Systems 
such as Microsoft’s SLAM and PreFAST are based upon the research advances funded by the federal 
government. For example, a report on SLAM states, “The project used and extended ideas from sym-
bolic model checking, program analysis and theorem proving.”� Those ideas emerged from academic 
research performed years earlier related to model checking and binary decision diagrams, and indeed 
Edmund Clarke won the 2008 Turing Award for his work on model checking. The authors of this tool, 
which has been is credited with significantly reducing the incidence of “blue screen” system crashes, 
were awarded the 2009 Microsoft Engineering Excellence, a success that represents the culmination of 
federally funded research from the 1970s through the 1990s. 

Early research on software testing advocated for coverage measures, such as statement and branch 
coverage, and tools were developed for symbolically executing paths in programs and automatically 
generating test cases to satisfy such measures�,�,10 The storage and speed of the machines at that time 
made this approach impractical, but advances in hardware combined with continued research advances 
in lightweight reasoning engines and higher-level languages have now made coverage monitoring a 

�  Letters from Ada Lovelace to Charles Babbage discussing programming errors are mentioned in Grady Booch 
and Doug Bryan, 1993, Software Engineering with ADA, 3rd Ed., Boston: Addison-Wesley Professional. Also see Grace 
Murray Hopper’s note in the log for the Aiken Mark II in 1947 in Grace Murray Hopper, 1981, “The First Bug,” Annals 
of the History of Computing 3(3):285-286, 1981.

�  Leon J. Osterweil and Lloyd D. Fosdick, 1976, “Some Experience with DAVE: A Fortran Program Analyzer,” in 
Proceedings of the National Computer Conference and Exposition, ACM, New York, NY, June 7-10, pp. 909-915.

�  Barabara G. Ryder, 1974, “The pfort Verifier,” Software: Practice and Experience 4(4):359-377.
�  Kurt M. Olender and Leon J. Osterweil, 1990,"Cecil: A Sequencing Constraint Language for Automatic Static 

Analysis Generation," IEEE Transactions on Software Engineering 16(3):268-280. 
�  Edmund M. Clarke and E. Allen Emerson, 1981, “Synthesis of Synchronization Skeletons for Branching Time 

Temporal Logic.” Pp. 52-71 in Logic of Programs: Workshop Lecture Notes in Computer Science 131, Berlin: Springer.
�  Gerard J. Holzmann, 1997, “The Model Checker SPIN,” IEEE Transactions on Software Engineering 23(5): 

279-295. 
�  Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani, 2004, “SLAM and Static Driver Verifier: 

Technology Transfer of Formal Methods Inside Microsoft,” Lecture Notes in Computer Science (LNCS) 2999:1-20; Eerke 
A. Boiten, John, Derrick, and Graeme, Smith, eds., 2004, Fourth International Conference on Integrated Formal Methods 
(IFM 2004), Canterbury, Kent, England, April 4-7. Researchers at Microsoft have stated that the majority of the “blue 
screen of death” errors evident in the 1990s were attributed to problems that could have been prevented with this 
analysis tool.

�  Lori A. Clarke, 1976, “A Program Testing System,” in Proceedings of the 1976 ACM Annual Conference, ACM, 
Houston, TX, October 20-22, pp. 488-491.

�  James C. King, 1975, ”A New Approach to Program Testing,” in Proceedings of the International Conference on 
Reliable Software, ACM, Los Angeles, CA, April 21-23, pp. 228-233.

10  Robert S. Boyer, Bernard Elspas, and Karl N. Levitt, 1975, “SELECT—A Formal System for Testing and Debug-
ging Programs by Symbolic Execution,” in Proceedings of the International Conference on Reliable Software, ACM, Los 
Angeles, CA, April 21-23, pp. 234-245. 

continued
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common industrial practice, along with sophisticated support for test case generation.11 Similarly, current 
trends in testing, such as the “Test First” approach widely adopted by agile software development teams (and 
tools such as the JUnit unit-testing framework) owe their foundation to early work on test case descriptions 
and automated execution,12,13 again based on U.S. government-funded research. 

Programming language development has also been strongly influenced by work in analysis of software 
systems, as noted above with Ada and its support for type safety and automated bounds checking. Although 
Ada was not a broad commercial success for various political, programmatic, and social-economic reasons, 
it is recognized as the direct ancestor of Java, which is widely adopted partly because of its embodiment of 
lessons from type theory, program analysis, and programming environment research. These lessons enabled 
Java to support richly capable libraries and software frameworks (as noted in Chapter 1). The C# language 
from Microsoft builds on similar foundations, and all three languages provide a stronger foundation for 
writing secure and high-quality code. 

2. From development environments to software architectures to domain-specific frameworks. The success 
of Java is also partly due to the recognition of the importance of an interactive development environment 
(IDE). Early development environments were language centric, such as Interlisp14 from 1981, but continued 
government-supported research, such as Field15 and Arcadia,16 advocated for looser interaction models and 
broad support for interoperability. This led to work on common data interchange models,17the forerunners 
to XML and all its variants, multi-language virtual machine models such as the Java Virtual Machine, and 
common interoperability protocols, such as Java’s remote method invocation (RMI) and certain features of 
Microsoft’s .NET framework. These advances, combined with the language principles, enabled the develop-
ment of modern integrated development environments (IDEs) such as Microsoft’s Visual Studio and Eclipse, 
originally developed by IBM but later released to open source. 

As software systems continued to grow in size and complexity, software engineering research broad-
ened from algorithm and data structure design to include software architecture issues18,19 and the recog-

 11 Dorota Huizinga and Adam Kolawa, 2007, Automated Defect Prevention: Best Practices in Software Management, 
Hoboken, NJ: Wiley-IEEE Computer Society Press.

12 Phyllis G. Frankl, Richard G. Hamlet, Bev Littlewood, and Lorenzo Strigini, 1998, “Evaluating Testing Methods by 
Delivered Reliability,” IEEE Transactions on Software Engineering 24(8):586-601.

 13 Phyllis G. Frankl, Richard G. Hamlet, Bev Littlewood, and Lorenzo Strigini, 1997, “Choosing a Testing Method to 
Deliver Reliability,” in Proceedings of the 19th International Conference on Software Engineering, ACM, Boston, MA, May 17-
23, 1997, pp. 68-78.

14  Warren Teitelman and Larry Masinter, 1981,“The Interlisp Programming Environment,” Computer 14(4):25-33.
15 Steven P. Reiss, 1990, “Connecting Tools Using Message Passing in the Field Environment,” IEEE Software 

7(4):57-66.
16  Richard N. Taylor, Frank C. Belz, Lori A. Clarke, Leon Osterweil, Richard W. Selby, Jack C. Wileden, Alexander L. 

Wolf, and Michael Young, 1989, “Foundations for the Arcadia Environment Architecture,” ACM SIGSOFT Software Engineer-
ing Notes 24(2):1-13.

17  David Alex Lamb, 1987, “IDL: Sharing Intermediate Representations,” ACM Transactions on Programming Languages 
and Systems 9(3):297-318.

 18 Mary Shaw and David Garlan, 1996, Software Architecture Perspectives on an Emerging Discipline, Upper Saddle River, 
NJ: Prentice Hall.

 19 Dewayne E. Perry and Alexander L. Wolf, 1992, “Foundations for the Study of Software Architecture,” ACM SIGSOFT 
Software Engineering Notes 17(4):40-52.

nition of common styles and design patterns.20 Work in software architecture was also an enabler of the 
development of high-level frameworks, such as Service Oriented Architectures21 electronic enterprise sys-
tems, the backbone of current e-business. Commercial architecture standards such as REST22 derive from 
government-supported software architecture research. 

3. From the waterfall to an agile compromise. Early software developers often viewed themselves as inde-
pendent artisans because they worked individually or in very small groups. The reality of the complexity of 
the systems that were being developed, the long-term duration, the vast resources required, and the large 
percentage of unsuccessful projects, led to the realization that large software system development needed 
to be supported by a carefully managed process. Early process models, and particularly the waterfall mod-
el,23 were developed as organizing frameworks to help organize the considerable pre-implementation and 
modeling work, and within them were identified the major software development phases. The actual flow 
from phase to phase was sometimes interpreted overly simplistically, leading to process models (e.g., the 
DoD 2167A standard) that are now considered cumbersome and overly rigid. Software leaders in academia 
and industry, such as Belady, Lehman, Mills, Boehm, and others, argued for more reasoned development 
models that incorporated risk assessment and incremental, evolutionary development.24,25,26 These models 
contained the seeds of the iterative ideas that now are nearly ubiquitously adopted by small development 
teams throughout industry. These were documented in the case of Microsoft by Cusumano and Selby27 and 
in the now extensive literature of small-team iterative methods under rubrics such as extreme, agile, scrum, 
TSP, and others. These methods are quite aggressively driving the development of tools to better support 
team activity including coordination across teams to support larger projects. Concepts including code 
refactoring, short development sprints, and continuous integration are now accepted practices. However, 
most agile practices have serious assurance and scalability problems,28 and need to be used selectively in 
large mission-critical systems or systems of systems.

 20 Martin Fowler, 2002, Patterns of Enterprise Application Architecture, Boston: Addison-Wesley Longman Publishing.
 21 Michael Bell, 2008, “Introduction to Service-Oriented Modeling,” Service-Oriented Modeling: Service Analysis, De-

sign, and Architecture, Hoboken, NJ: Wiley & Sons.
 22 Roy T. Fielding and Richard N. Taylor, 2002, “Principled Design of the Modern Web Architecture,” ACM Transactions 

on Internet Technology 2(2):115-150.
 23 Winston W. Royce, 1970, “Managing the Development of Large Software Systems: Concepts and Techniques,” Technical 

Papers of Western Electronic Show and Convention (WesCon), August 25-28, Los Angeles, CA.
 24 Laszlo Belady and Meir M. Lehman, 1985, Program Evolution Processes of Software Change, London, UK: Academic 

Press.
 25 Barry Boehm, 1986, “A Spiral Model of Software Development and Enhancement,” ACM SIGSOFT Software Engineer-

ing Notes 11(4):14-24.
 26 Harlan Mills, 1991, “Cleanroom Engineering,” American Programmer, May, pp. 31-37.
 27 Michael A. Cusumano and Richard W. Selby, 1995, Microsoft Secrets: How the World’s Most Powerful Software Com-

pany Creates Technology, Shapes Markets, and Manages People, New York: Harper Collins Business.
 28 Barry Boehm and Richard Turner, 2004, Balancing Agility and Discipline, Boston: Addison-Wesley.

BOX 5.2   continued
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common industrial practice, along with sophisticated support for test case generation.11 Similarly, current 
trends in testing, such as the “Test First” approach widely adopted by agile software development teams (and 
tools such as the JUnit unit-testing framework) owe their foundation to early work on test case descriptions 
and automated execution,12,13 again based on U.S. government-funded research. 

Programming language development has also been strongly influenced by work in analysis of software 
systems, as noted above with Ada and its support for type safety and automated bounds checking. Although 
Ada was not a broad commercial success for various political, programmatic, and social-economic reasons, 
it is recognized as the direct ancestor of Java, which is widely adopted partly because of its embodiment of 
lessons from type theory, program analysis, and programming environment research. These lessons enabled 
Java to support richly capable libraries and software frameworks (as noted in Chapter 1). The C# language 
from Microsoft builds on similar foundations, and all three languages provide a stronger foundation for 
writing secure and high-quality code. 

2. From development environments to software architectures to domain-specific frameworks. The success 
of Java is also partly due to the recognition of the importance of an interactive development environment 
(IDE). Early development environments were language centric, such as Interlisp14 from 1981, but continued 
government-supported research, such as Field15 and Arcadia,16 advocated for looser interaction models and 
broad support for interoperability. This led to work on common data interchange models,17the forerunners 
to XML and all its variants, multi-language virtual machine models such as the Java Virtual Machine, and 
common interoperability protocols, such as Java’s remote method invocation (RMI) and certain features of 
Microsoft’s .NET framework. These advances, combined with the language principles, enabled the develop-
ment of modern integrated development environments (IDEs) such as Microsoft’s Visual Studio and Eclipse, 
originally developed by IBM but later released to open source. 

As software systems continued to grow in size and complexity, software engineering research broad-
ened from algorithm and data structure design to include software architecture issues18,19 and the recog-

 11 Dorota Huizinga and Adam Kolawa, 2007, Automated Defect Prevention: Best Practices in Software Management, 
Hoboken, NJ: Wiley-IEEE Computer Society Press.

12 Phyllis G. Frankl, Richard G. Hamlet, Bev Littlewood, and Lorenzo Strigini, 1998, “Evaluating Testing Methods by 
Delivered Reliability,” IEEE Transactions on Software Engineering 24(8):586-601.

 13 Phyllis G. Frankl, Richard G. Hamlet, Bev Littlewood, and Lorenzo Strigini, 1997, “Choosing a Testing Method to 
Deliver Reliability,” in Proceedings of the 19th International Conference on Software Engineering, ACM, Boston, MA, May 17-
23, 1997, pp. 68-78.

14  Warren Teitelman and Larry Masinter, 1981,“The Interlisp Programming Environment,” Computer 14(4):25-33.
15 Steven P. Reiss, 1990, “Connecting Tools Using Message Passing in the Field Environment,” IEEE Software 

7(4):57-66.
16  Richard N. Taylor, Frank C. Belz, Lori A. Clarke, Leon Osterweil, Richard W. Selby, Jack C. Wileden, Alexander L. 

Wolf, and Michael Young, 1989, “Foundations for the Arcadia Environment Architecture,” ACM SIGSOFT Software Engineer-
ing Notes 24(2):1-13.

17  David Alex Lamb, 1987, “IDL: Sharing Intermediate Representations,” ACM Transactions on Programming Languages 
and Systems 9(3):297-318.

 18 Mary Shaw and David Garlan, 1996, Software Architecture Perspectives on an Emerging Discipline, Upper Saddle River, 
NJ: Prentice Hall.

 19 Dewayne E. Perry and Alexander L. Wolf, 1992, “Foundations for the Study of Software Architecture,” ACM SIGSOFT 
Software Engineering Notes 17(4):40-52.

nition of common styles and design patterns.20 Work in software architecture was also an enabler of the 
development of high-level frameworks, such as Service Oriented Architectures21 electronic enterprise sys-
tems, the backbone of current e-business. Commercial architecture standards such as REST22 derive from 
government-supported software architecture research. 

3. From the waterfall to an agile compromise. Early software developers often viewed themselves as inde-
pendent artisans because they worked individually or in very small groups. The reality of the complexity of 
the systems that were being developed, the long-term duration, the vast resources required, and the large 
percentage of unsuccessful projects, led to the realization that large software system development needed 
to be supported by a carefully managed process. Early process models, and particularly the waterfall mod-
el,23 were developed as organizing frameworks to help organize the considerable pre-implementation and 
modeling work, and within them were identified the major software development phases. The actual flow 
from phase to phase was sometimes interpreted overly simplistically, leading to process models (e.g., the 
DoD 2167A standard) that are now considered cumbersome and overly rigid. Software leaders in academia 
and industry, such as Belady, Lehman, Mills, Boehm, and others, argued for more reasoned development 
models that incorporated risk assessment and incremental, evolutionary development.24,25,26 These models 
contained the seeds of the iterative ideas that now are nearly ubiquitously adopted by small development 
teams throughout industry. These were documented in the case of Microsoft by Cusumano and Selby27 and 
in the now extensive literature of small-team iterative methods under rubrics such as extreme, agile, scrum, 
TSP, and others. These methods are quite aggressively driving the development of tools to better support 
team activity including coordination across teams to support larger projects. Concepts including code 
refactoring, short development sprints, and continuous integration are now accepted practices. However, 
most agile practices have serious assurance and scalability problems,28 and need to be used selectively in 
large mission-critical systems or systems of systems.

 20 Martin Fowler, 2002, Patterns of Enterprise Application Architecture, Boston: Addison-Wesley Longman Publishing.
 21 Michael Bell, 2008, “Introduction to Service-Oriented Modeling,” Service-Oriented Modeling: Service Analysis, De-

sign, and Architecture, Hoboken, NJ: Wiley & Sons.
 22 Roy T. Fielding and Richard N. Taylor, 2002, “Principled Design of the Modern Web Architecture,” ACM Transactions 

on Internet Technology 2(2):115-150.
 23 Winston W. Royce, 1970, “Managing the Development of Large Software Systems: Concepts and Techniques,” Technical 

Papers of Western Electronic Show and Convention (WesCon), August 25-28, Los Angeles, CA.
 24 Laszlo Belady and Meir M. Lehman, 1985, Program Evolution Processes of Software Change, London, UK: Academic 

Press.
 25 Barry Boehm, 1986, “A Spiral Model of Software Development and Enhancement,” ACM SIGSOFT Software Engineer-

ing Notes 11(4):14-24.
 26 Harlan Mills, 1991, “Cleanroom Engineering,” American Programmer, May, pp. 31-37.
 27 Michael A. Cusumano and Richard W. Selby, 1995, Microsoft Secrets: How the World’s Most Powerful Software Com-

pany Creates Technology, Shapes Markets, and Manages People, New York: Harper Collins Business.
 28 Barry Boehm and Richard Turner, 2004, Balancing Agility and Discipline, Boston: Addison-Wesley.
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may matter much less than the timeliness of the idea and the readiness of the environment to address it 
in a successful way. Many old ideas, considered as failing concepts, resurfaced years later at the “right 
time” and made a significant difference. In other words, the key question is not so much, What are the 
new ideas? but rather, What are the ideas whose time has come?

•	 Measurement of effectiveness and performance. The challenges of software measurement as discussed 
in the previous chapters—with respect to process measures, architecture evaluation, evidence to support 
assurance, and overall extent of system capability—apply also to software engineering research. We 
lack, for example, good ways to measure the impact of any specific research result on software quality, 
which stems in part from the lack of good measures of software quality. Without reliable, validated 
measures it is hard to quantify the impact of innovations in software producibility, even those that are 
widely credited with improving quality, such as the introduction of strong typing into programming 
languages or traceability in software-development databases. This is analogous to the productivity para-
dox, recently resolved.13 Because software is an enabling technology—a building material rather than a 
built structure—it may not fit with research program management models that focus on production of 
artifacts with immediately, clearly, and decisively measurable value. 

•	 Timescale for impact. Frequently, it is only after a significant research investment has been made 
and proof of concept demonstrated that industry has stepped in to transition a new concept into a 
commercial or in-house product. Also, there are many novel products/services that result from mul-
tiple, independent research results, none of which is decisive in isolation, but which when creatively 
combined lead to breakthroughs. Although it may appear that a new development emerged overnight, 
further inspection usually reveals decades of breakthroughs and incremental advances and insights, 
primarily funded from federal grants, before a new approach becomes commonly accepted and widely 
available. CSTB’s 2003 report Innovation in Information Technology reinforces this point. It states, “One of 
the most important messages … is the long, unpredictable incubation period—requiring steady work 
and funding—between initial exploration and commercial deployment. Starting a project that requires 
considerable time often seems risky, but the payoff from successes justifies backing researchers who 
have vision.”

Areas for Future Research Investment

In this section, the committee identifies seven areas for potential future research investment and, 
for each area, a set of specific topics that the committee identifies as both promising and especially rel-
evant to defense software producibility. These selections are made on the basis of the criteria outlined 
at the beginning of this chapter. The descriptions summarize scope, challenges, ideas, and pathways to 
impact. But, obviously, these descriptions are not (even summary) program plans—the development of 
program plans from technical descriptions requires consideration of the various program management 
risk issues,14 development of management processes and plans on the basis of the risk identification, 
identification of collaborating stakeholders, and other program management functions. In the develop-
ment of program plans, choices must be made regarding scale of the research endeavor and the extent 
of prototype engineering, field validation, and other activities that are required to assess the value of 
emerging research results. In some areas, a larger number of smaller projects may be most effective, while 
in other areas more experimental engineering is required and the research goals may be best addressed 

13 This is analogous to the so-called “productivity paradox,” according to which economists struggled to account for the pro-
ductivity benefits that accrued from investments made by firms in IT. The productivity improvements due to IT are now identi-
fied, but for a long time there was speculation regarding whether the issue was productivity or the ability to measure particular 
influences on productivity. (This issue is also taken up in Chapter 1.)

14 An inventory of risk issues for research program management appears in Chapter 4 of NRC, 2002, Information Technology Re-
search, Innovation, and E-Government, Washington, DC: National Academy Press. Available online at http://www.nap.edu/catalog.
php?record_id=10355. Last accessed August 20, 2010.
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through a small set of larger and more integrated projects.15 Also in the development of program plans, 
choices must be made regarding the degree to which an agency program focuses on a particular solution 
strategy—rather than posing a problem and soliciting a diversity of potential solution approaches, many 
of which may not have been anticipated when the problem was posed and the program formulated. 
Particularly in software research, where the development of new metaphors and models is essential to 
progress, this latter approach can be very valuable.16

The descriptions, rather, serve primarily as a summary of points made in earlier chapters relating 
to technology advances that would “make a difference” in software producibility (and that meet the 
criteria). The committee offers them as recommended focal points for renewed investment in defense 
software producibility.

Area 1.  Architecture Modeling and Architectural Analysis

As noted throughout this report, improvements in the ability of the DoD to manage system design, 
evaluation, development, and evolution at the architectural level are a key to improved software produc-
ibility. For precedented systems, such advances would mean having and using documented, validated 
architectures and making good ecosystems choices. Improvements here can increase the value and 
flexibility of libraries and frameworks, and can facilitate their use through modeling and validation, for 
example. For innovative systems (this report’s principal focus), good architecture choices are often the 
keys to successful development and are significant to the scaling up and interlinking of systems, process 
management, enabling incremental practices, assurance, and reduction of diverse kinds of engineer-
ing risks related to design, interoperation, and supply-chain choices. Because the DoD benefits greatly 
from interlinked systems (net-centric, ultra-scale, systems of systems), advances in architecture-related 
capabilities make a greater difference both in potential to achieve systems capability and in ability to 
effectively manage architecture-related engineering risks. Yet, despite major advances in knowledge 
of software and system architecture, the state of knowledge and certainly the state of technology and 
practice today are inadequate to support DoD needs in this area, even for precedented systems. DoD 
success in software-intensive systems producibility depends on future research results in this area, and 
the transitioning of such results into useful notations, technologies, practices, and rules. The committee 
identifies three principal goals for architecture research. 

Goal 1.1: Facilitate Mission-Oriented Modular Architectures

A good example of mission-oriented modular architecture is the decoupling of sensors, battle 
command, and weapons release. These functions, co-located in a tank, battleship, or fighter aircraft 
for example, not only can be separated geographically, but also can be shared across multiple battle-
field functions. This has a near-irresistible value, analogous to Metcalfe’s Law for network-structured 
systems.17 This is part of the compelling rationale for goals associated with the Army Future Combat 
Systems (FCS) and Theater Ballistic Missile Defense (BMD) models with net-centric approaches, intel-
ligence linking, and the like. In this model, a shooter can be guided by a multitude of geographically 
dispersed sensors, and unmanned sensors and shooters can be positioned at dangerous locations 

15  DARPA, for example, has used both approaches to advantage over the years. 
16  This is “solution risk” as described in Chapter 4 of NRC, 2002, Information Technology Research, Innovation, and E-Government, 

Washington, DC: National Academy Press. Available online at http://www.nap.edu/catalog.php?record_id=10355. Last accessed 
August 20, 2010. 

17  Metcalfe’s Law asserts that the aggregate value of a network to its members grows with the square of the number n of mem-
bers—proportional to the number of edges in a complete graph of size n. This is a folkloric explanation of why the pressure to 
combine networks (as in the original internet, but also for instant message interoperation, convergence of fax standards, etc.) is 
so difficult for operators to resist, even when it creates business risks through loss of lock-in.
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through the use of autonomous and teleoperated vehicles. The model thus affords tremendous power 
and agility to theater commanders. 

With respect to this research issue: Because the architecture is fundamentally driven by interoper-
ability and integration requirements, effective management of architecture can be a great enabler for 
joint (multiple military services, including air, land, sea, space, and cyber) and combined (international 
and coalition) warfare. But from the standpoint of systems engineering, the power comes at a signifi-
cant price, which is the high level of complexity and engineering risk that comes from the extent of 
coupling and operational flexibility required among the multitude of sensors, weapons, and battle 
command centers. For example, how can architectures be developed and validated to support the kind 
of local autonomy necessary for a vehicle to navigate effectively over mixed terrain? How can “unan-
ticipated requirements be anticipated” such as command and control for rapidly assembled coalitions, 
for example, to address a natural disaster? How can software and systems architectures be evolved, for 
example, as algorithms and machine-learning capabilities improve? Moreover, by specifying interfaces 
where testing or measurement is possible, by defining reusable components, and by separating critical 
from noncritical parts of the system, architecture plays an essential role in assurance. What happens 
when a vehicle or platform is compromised? How is resiliency built into the architecture to avoid a 
deliberately stimulated cascading failure?

Architecture is more than a “top down” laying out of systems structure or theoretical contemplation 
of design possibilities. The skills of a software architect in trading off diverse considerations to fix on 
essential design commitments is described by the Roman architect Vitruvius (ca. 15 BC):

The architect should be equipped with knowledge of many branches of study and varied kinds of learning, 
for it is by his judgment that all work done by the other arts is put to the test. This service of his is the child 
of theory and practice. Practice is the continuous and regular exercise of employment where manual work 
is done with any necessary material according to the design of the drawing. Theory, on the other hand is 
the ability to demonstrate and explain things wrought in accordance with technical skills and method. It 
follows, therefore, that architects who have aimed at acquiring manual skills without theory have not been 
able to reach a position of authority to correspond with their pain, while those who relied only on theories 
and learning were obviously hunting the shadow, not the substance. But those who have mastered both, 
like men equipped in full armor, soon acquire influence and attain their purpose.

There are several specific challenges associated with this goal:

•	 Architectural decisions. Architectural decision making is driven by the combined consideration of 
multiple interacting factors. Some factors derive from stakeholder needs—these are functional scope 
and quality attributes such as degree of assurance needed, operational safety and security, design evolv-
ability, online adaptability, performance, cost, etc. Other factors are internal factors, reflecting the inter-
dependency of the various dimensions of architectural decision making. For today’s major applications, 
for example, a diversity of architectural styles is induced by sets of interrelated decisions concerning 
the combination of frameworks, platforms, and middleware to be adopted. Advancing architecture 
into a more scientific activity requires improvement in our understanding of architectures as sets of 
critical and dynamic (and internal and external) parameter values subject to complex constraints and 
dependences.

•	 Architecture scalability and evolvability. Current architecture capabilities do not scale up to repre-
senting and evolving architecture models across multiple systems, multiple subcontractor levels, and 
multiple increments. They do not do well at such needed functions as change impact analysis or multi-
version change propagation for large-scale systems or systems of systems.

•	 Architectural measures. In return for investments in architecture, one expects to gain predictable, 
quantifiable advantages in both system development and operation. This is particularly significant, as 
cost statistics show that architecture decisions account for greater proportions of overall cost as systems 
scale up in size and complexity. As architecture scales up, modularity becomes an increasingly crucial 
issue, for example. Decisions in this area are among the most consequential yet least well understood in 
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any major project. There are well-understood consequences for system trustworthiness (e.g., through the 
isolation of critical elements), producibility, flexibility, and adaptability. Less modularity makes assur-
ance more elusive, and it makes changes more costly and risky. The research challenge is to develop 
new techniques for architectural modeling and analysis that focus on various measures of modularity 
and interlinking among system elements. 

•	 Architectural modeling and evaluation. How can architectural models be expressed to support such 
diverse architecture-level analyses prior to the full development of code? What kinds of analytics can be 
developed, including simulation, static analyses of various kinds, model checking, and other analyses. 
What kind of traceability support can be created to connect architectural representations to representa-
tions of requirements and other stakeholder concerns, on one hand, and to the more detailed concerns 
of system design, construction, and governance of development and change, on the other?

•	 Architecture compliance. How can tools be developed (for increasingly complex architecture models 
and styles) to assist designers, developers, and requirements engineers in assessing, on an ongoing 
basis, the consistency of their models with architectural models? This is complicated by issues related 
to framework design, concurrency, and other issues. For example, a framework or application program-
ming interface (API) may expect to receive an object not only of a particular type (e.g., “file handle”) 
but also in a particular state (“open”). This is not well addressed in current programming languages or 
architectural models.

Goal 1.2: Facilitate Architecture-Aware Systems Management

Management of architecture aligns with management of sourcing of components and infrastructure, 
with system development and evolution, and also with definition of mission processes (or business 
processes). Such alignment, or congruence (which refers specifically to the relationship of architecture 
structure with organization structure),18 is essential to managing the coordinated scaling up and evolu-
tion of systems, organizations, and the mission processes supported. It is the IT-business convergence 
that is a consideration for many corporate chief information officer (CIO) organizations and that is also 
a key to success for many IT-enabled firms.19

Challenges associated with this goal are as follows:

•	 Models of congruence. As architecture models are enriched, models for modeling and managing 
congruence become more complex and technically involved. 

•	 Enriched software supply chains. Supply-chain structure is only increasing in richness and complex-
ity, and it is further complicated by the greater extent of intertwining of iterative processes across pro-
ducer/consumer boundaries. What architecture-level interventions could facilitate assessment, across 
a supply chain, of consistency of an evolving system with its defined architectural intent?

•	 Ecosystems and infrastructure. The DoD is unavoidably a participant in diverse commercial eco-
systems. What architectural practices can assist in lessening the engineering risks associated with this 
involvement? For example, how can notions of technical software and system architecture be extended, 
adapted, or improved to enable better design and performance of the socio-technical ecosystems that 
surround, develop, and use complex systems? 

•	 Incompatible hardware and software architectural relationships. As discussed in Chapter 2, many sys-
tems architectures are organized into functional-hierarchy hardware relationships (also reinforced by 

18  Marcelo Cataldo, James D. Herbsleb, Kathleen M. Carley, 2008, Socio-Technical Congruence: A Framework for Assessing the Impact 
of Technical and Work Dependencies on Software Development Productivity. Proceedings of the Second ACM-IEEE Symposium on 
Empirical Software Engineering and Measurement, ACM, Kaiserslautern, Germany, October 9-10, pp. 2-11.

19  For examples at Amazon and Boeing, see NRC, 2007, Summary of a Workshop on Software-Intensive Systems and Uncertainty at 
Scale, Washington, DC: National Academies Press. Available online at http://www.nap.edu/catalog.php?record_id=11936. Last 
accessed August 20, 2010. 
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the current revision of MIL-STD-881 on Work Breakdown Structures) that are incompatible with layered 
service-oriented software architectures. Research is needed on how better to reconcile these.

Goal 1.3: Facilitate Architecture-Driven Development

The core practice of architecture depends on our ability to take conceptual structures and manifest 
them concretely as architectural designs before systems are actually constructed. This is the essential 
feedback loop to reduce the most fundamental of engineering risks in innovative software engineering. 
As noted in Chapter 1, there is no physical limit regarding what can be accomplished at the architecture 
level to facilitate component-based development—in a way that addresses concerns over modularity, 
assurance, measurement, and other considerations. 

Challenges associated with this goal are as follows:

•	 Architecture designs for particular domains. It is sometimes asserted that there are relatively few 
fundamental “phyla” of software, such as web services stacks, control systems of various kinds, dis-
tributed data-intensive systems, graphical user-interaction systems, etc. Within each of these phyla are 
various established ecosystems and also more advanced custom designs. The DoD can derive great 
benefits when it leads the advancement of ecosystem development for areas critical to its mission—it 
can directly assure attention to issues related to defense needs, rather than having to find ways to work 
around deficiencies in ecosystems established by others. 

•	 Emerging architectural concepts. Software architecture capability continues to be enriched beyond 
the old model of static structural connections. Recent developments include frameworks and plug-ins, 
dynamic and adaptive models, service-oriented models, application frameworks, cloud and utility 
computing, virtualization, data-intensive models, and others. There continue to be emerging concepts 
that can be of benefit to complex DoD quality attribute requirements. 

Goal 1.4: Facilitate Architecture Recovery

Many DoD systems do not have the benefit (and risk) of developing completely new architectures, 
but must find ways to provide continuity of service from legacy systems whose software is not well 
structured or documented (a different kind of risk). Some initial approaches for recovering service-ori-
ented architectures for such legacy systems are emerging.20 Further research and experience on such 
approaches would strengthen software producibility for the increasing number of DoD brownfield 
software development situations.

Area 2.  Assurance: Validation, Verification, Analysis of Design and Code

Chapter 4 elaborates the significance, role, and practice of software assurance. It also identifies a 
number of capabilities that, if better applied and/or augmented, could greatly enhance the ability of the 
DoD to develop systems that are both highly capable and highly assured—and to do so with acceptable 
costs and programmatic risk. As noted in Chapter 1, the broadening role of systems and the consequent 
increase in hazards associated with very large systems combine to enhance the significance of assur-
ance, while the challenge of assurance is increased due to the complexity of modern architectures and 
supply chains. On the other hand, the capacity to achieve assurance is enhanced by the recent important 
progress in modern programming languages, tools, modeling, and analysis capability. 

20  Two examples are the IBM VITA approach (Hopkins and Jenkins, 2008, Eating the IT Elephant: Moving from Greenfield Develop-
ment to Brownfield, Upper Saddle River, NJ: IBM Press) and the CMU-SEI SMART approach (Edwin J. Morris, Dennis B. Smith, and 
Soumya Simanta, 2008, SMART: Analyzing the Reuse Potential of Legacy Components on a Service-Oriented Architecture Environment, 
CMU/SEI-TR-2008-TN-008, Pittsburgh, PA: Carnegie Mellon University). 
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For new assurance technologies and practices, critical acceptance criteria must include scalability, 
which for many attributes (such as security and safety) usually also means composability, and usability 
by developers with minimal training. This greatly facilitates preventive use on a routine basis and thus 
enhances the ability of the DoD to structure incentives back into the supply chain for developers to create 
evidence along with code products. As in the case of security, many interventions in technology and 
practice that relate to assurance are not in the form of separate tools, but rather in the form of enhance-
ments to tools and practices already in place for other purposes. For example, assurance considerations 
affect architecture modeling (e.g., to detect information paths that are not supposed to be present), 
requirements-related models, traceability and team information management tooling, programming 
language design, runtime infrastructure design, and many other areas. 

Goal 2.1: Effective Evaluation for Critical Quality Attributes

This includes a wide range of technologies related to modeling, reverse engineering (“program 
understanding”), analysis, testing, inspection support, verification, and model checking, as well as 
support for managing the associated collected information and proof structures. This goal is addressed 
not only through the development of new techniques, but, as noted, also through the enhancement of 
practices and tools related to a diverse set of software engineering activities. 

In general, a mature software development shop will employ multiple techniques to support assur-
ance and evaluation. This is based on the fact that there are many different quality attributes and kinds 
of defects.21 At a mature industry development organization, many different kinds of techniques and 
tools are used, including test frameworks, analyses with respect to different kinds of quality attributes, 
binary and source analysis, inspection support, metric tracking, and many others. This means that 
improvements in particular capabilities, when structured appropriately, can gracefully be inserted into 
practice.

Considerable further research is needed, however, to ensure scalability of such tradeoff analysis 
capabilities—that optimizing on one assurance aspect does not overly penalize other quality attributes. 
For example, optimizing on security has been seen to adversely affect performance (via system over-
head), reliability (via single points of failure), adaptability (via recertification delays), or usability (via 
authentication constraints and delays), particularly for complex net-centric systems of systems.

Goal 2.2: Assurance for Components in Large Heterogeneous Systems

The goal of composable assurance for larger-scale systems is broad and complex. On the one hand, 
there are already a small number of composable analyses already in use (typing being a principal 
example). But, on the other hand, composable analyses have not yet emerged for critical security, per-
formance, and other attributes. The pathway to such capability can include model design, theoretical 
and semantic research, programming language improvement (as is routinely done with major languages 
such as Java, Fortran, C++, C, and others), tool development, and so on. A research program that focuses 
on the goal would thus benefit by encompassing research approaches that address primarily a quality 
objective and feasibility criterion for potential adoption, but are not overly constrained with respect to 
specific manifestation in the process. 

One of the challenges is to improve assurance for data containment in component-oriented sys-
tems. This derives from the observation (in Chapter 4) that in many large and heterogeneous software 
systems containing diversely sourced components (with corresponding diversity in levels of trust), the 
attack surface is “at the API.” A particular concern is assuring that flows of data are as intended in the 

21  See comments in Chapter 4 regarding Mitre’s Common Weakness Enumeration (CWE) inventory for security and code-safety 
attributes. There are also diverse attributes related to adaptability and flexibility, for example, modularity measures, coupling, 
pattern compliance, interface attributes, etc.
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architectural models. This is a deeply technical challenge, as are many of the other challenges related 
to assurance.

Goal 2.3: Enhance the Portfolio of Preventive Methods to Achieve Assurance

In addition to the primarily evaluative techniques, interventions in development activities can 
greatly enhance the potential for accreting, on an ongoing basis in development, a body of evidence in 
support of assurance cases. For example, assurance considerations affect architecture modeling, require-
ments-related models, traceability and team information management tooling, programming language 
design, the design of runtime infrastructure, and many other areas.

If research in this area is successful, the difference it will make will be evident in two ways. First, 
less work will produce higher assurance, in the form of stronger claims with respect to critical quality 
attributes, and, second, the balancing of effort in evidence production will shift from acceptance evalu-
ation toward development, thus reducing engineering risk with respect to assurance. A wide range of 
technical ideas have emerged over the years in support of this concept, and this has also influenced 
language design. A crude way to think about this is that an existing language, together with additional 
specification information (e.g., types) and analysis capability (e.g., a type checker), can lead naturally to 
the next-generation programming of language in which the specification information becomes intrinsic 
and the analysis capability is integrated with the compiler, loader, and runtime system. 

Additional specific challenges include the following:

•	 Preventive methods also include ideas building on the concept of “proof-carrying code” or more 
generally “evidence-carrying code.”22

•	 A significant enabler of preventive techniques in development activity is the adoption of processes 
and practices that enhance assurance. Examples include the Lipner/Howard Security Development 
Lifecycle and Gary McGraw’s process.23 These processes can continue to be enhanced and refined as 
new practices, tools, and languages emerge.

•	 Architectural building blocks can be enhanced to facilitate instrumentation and logging in systems 
to support real-time, near-real-time, and forensic checking of consistency with models. It is important 
to note that not all significant attributes can be checked in this way, although sometimes modifications 
to architecture can expand the scope of what can be checked dynamically. 

•	 Develop architectures for containment such as sandboxing, process separation, virtual machines, 
and abstract machines. There is great opportunity to rethink basic concepts in systems software support, 
with a focus on achieving the simplifications that can lead to greater assurances regarding regulation 
of control and data flows among major components. The success of restricted ecosystems such as those 
evident on iPhones and other restricted platforms suggests the possibility of progress in this area.

•	 Employ development techniques including co-development of software, selective specifications 
(for functional and quality attributes), and evidence of verification (consistency) of the software code 
with the specifications and associated models. Different techniques apply to different properties— what 
may be workable for particular quality attributes may not be useful for functional, performance, or 
deadline properties. Most of these techniques rely on some use of explicit specifications. A goal is to 
reduce the extent of specification required, ultimately to fragmentary specifications that enable design-
ers and developers to distinguish what is an intended truth from what may be an accidental truth. The 
intended truth may be a design commitment that can be relied upon. The accidental truth may be a 
consequence of a particular algorithm or infrastructure choice that needs to be subject to revision as 

22  George C. Necula and Peter Lee, 1998, Safe, Untrusted Agents Using Proof-Carrying Code. Lecture Notes in Computer Science—
Mobile Agents and Security, London, UK: Springer-Verlag, pp. 61-91.

23  See Michael Howard and Steve Lipner, 2006, The Security Development Lifecycle, Redmond, WA: Microsoft Press; also Grady 
McGraw, Software Security: Building Security In, Boston: Addison-Wesley.
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technology evolves. This co-development approach is intended to facilitate incremental and iterative 
development practices because it simultaneously creates software and assurance-related evidence. 

•	 The reality of enriched and diversified supply chains for software systems suggests that pervasive 
acceptance of preventive methods may not be fully achievable. For this reason, it is important to also 
address the challenge of improving a posteriori methods, including not only evaluative techniques, but 
also other approaches based on obfuscation and dynamic techniques.

•	 Develop and use programming languages that enhance assurance. The experience of software 
developers is that language shifts occur at unpredictable times and for unpredictable reasons. None-
theless, these shifts are generally extensively influenced by research. For example, Ada95, Java, and C# 
were all influenced by the same set of ideas regarding types, safe storage management, concurrency, 
name space management, access management, and many other languages elements. The emerging 
generation of domain-specific languages and dynamic languages is now well established, providing 
developers with greater flexibility in development practice but also less safety than the established 
languages. Research work could be accelerated to augment these languages with features that preserve 
the usability and flexibility while enhancing the potential for assurance. 

Area 3. Process Support and Economic Models for Assurance and Adaptability 

Chapters 2 and 4 both address issues related to process and assurance and suggest the following 
as research goals.

Goal 3.1: Enhance Process Support for Both Agile and Assured Software Development

This includes both product and process architectures based on identifying the parts of the product 
and process most needing agility or assurance, and organizing the architectures around them. For prod-
ucts, one way to do this is by encapsulating the major sources of change into modules to be handled 
by agile methods.24 Examples of such sources of change are user interfaces, interfaces to independently 
evolving systems, or device drivers. For projects, one way to do this is to partition evolutionary devel-
opment around stabilized high-assurance development increments, while a parallel team is handling 
the change traffic and developing the specifications and plans for the next increment. 

It also includes further improvements in information management for teams and larger develop-
ment organizations. Areas of focus could beneficially include improved traceability particularly for 
formal and “semi-formal” information items, integration of models and analyses and simulation, and 
measurement support to facilitate iteration and evaluation (e.g., to dynamically identify and adapt to 
new sources of rapid change). 

Goal 3.2: Address Supply-Chain Challenges and Opportunities

As supply chains are enriched and diversified, there is an increasing potential benefit from tools 
that can manage a joint corpus of information and whose content and sharing is regulated according to 
a contractual relationship. Enhancements of this kind can better support evidence production by pro-
ducers to accelerate client acceptance evaluation. The enhancements can also better support intertwined 
iterations. Such tools need to be reinforced by contractual provisions enabling visibility and measur-
ability of development and risk management plans and progress vs. plans, both along a supply chain, 
and up and down the subcontractor chains.

24  David Parnas, 1978, “Designing Software for Ease of Extension and Contraction,” Proceedings of the 3rd International Conference 
on Software Engineering, IEEE, Atlanta, GA, May 10-12, pp. 264-277.
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Goal 3.3: Facilitate Application of Economic Principles to Decision Making

An additional area of potential significance is the development of applicable economic models to 
guide decision making, for example, related to the interplay of architecture choices, component and 
ecosystems choices, supply-chain choices, and attributes of cost, risk, schedule, and quality. As dis-
cussed in Chapter 2, prioritizing features to enable time-certain development provides a strong proxy 
for economic value-based management and decision making.

Goal 3.4: Develop and Apply Policy Guidance and Infrastructure for 
Conducting Evidence-Based DoD Milestone Reviews

As also discussed in Chapter 2, this task includes establishing the evidence of solution feasibility 
as a first-class deliverable, reviewing evidence-development plans, and tracking evidence development 
progress vs. plans via earned value management. It also requires research into which classes of process-
focused evidence development (models, simulations, prototypes, benchmarks, exercises, instrumenta-
tion, etc.) are best suited for which classes of system elements.

Goal 3.5: Enhance Process Support for Integrated Definition and Development of System 
Hardware, Software, and Human Factors Requirements and Architectural Solutions

Too often, system architectures are driven by hardware relationships that overly constrain software 
and human factors solutions. Examples of approaches are “soft systems engineering,” systems architect-
ing, co-evolution, incremental iterative development (IID) models based on spiral development, and 
Brooks’s design processes and patterns.25

Area 4.  Requirements 

The challenges for requirements are, in many respects, similar to those of architecture. How to 
achieve early validation? How to express the information that is gathered from stakeholders concerning 
both functional requirements and quality attributes? How to achieve traceability and model consistency 
that effectively links requirements with architecture and assurance?

As noted in the previous chapters, requirements are only occasionally fully established at the outset 
of the development of an innovative software system. More often, there are early constraints on quality 
attributes, definitions of the overall scope of function and interlinking, and a few other “shall” or “must-
have” constraints. Many of the other elements that eventually become manifest as features or quality 
attributes are in fact the result of early iterations with stakeholders, and many of these are informed by 
the improved understanding of both the technological and operational environments as they evolve. 
In other words, requirements engineering is an ongoing activity throughout development. For long-
lived systems, as noted in the 2006 Software Engineering Institute (SEI) report Ultra-Large-Scale Systems, 
requirements engineering is ongoing throughout the lifetime of the system. 

25  Soft systems engineering (see Peter Checkland, 1981, Systems Thinking, Systems Practice, Hoboken, NJ: Wiley); systems 
architecting (see Eberhardt Rechtin, 1991, Systems Architecting: Creating & Building Complex Systems, Englewood Cliffs, NJ: 
Prentice Hall), co-evolution (see Mary Lou Maher, Josiah Poon, and Sylvie Boulanger, 1996, “Formalizing Design Explora-
tion as Co-evolution: A Combined Gene Approach,” pp. 3-30 in Advances in Formal Design Methods for CAD, John S. Gero and 
Fay Sudweeks, eds., London, UK: Chapman and Hall), the incremental commitment model upgrade of spiral development 
(NRC, Richard W. Pew and Anne S. Mavor, eds., 2007, Human-System Integration in the System Development Process: A New 
Look, Washington, DC: National Academies Press, available online at http://books.nap.edu/catalog.php?record_id=11893), and 
Brooks’s design processes and patterns (see Fred Brooks, 2010, The Design of Design: Essays from a Computer Scientist, New York, 
NY: Addison-Wesley).
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Goal 4.1: Expressive Models and Supporting Tools

A feature of modern requirements methodology is the capture of scenarios and use cases and the 
expression of these using effective but mostly informal notations. For agile or feature-driven develop-
ments, attention is addressed to the granularity of featuring, so to speak, because that becomes both the 
basis of priority setting (“above the line”) and the metric of progress (“velocity” or “burn down”). For 
innovative large systems, there is more focus on capturing the model in a sufficiently precise form to 
support progress measurement and acceptance evaluation. Regardless of the approach, however, there 
are common core technical challenges, which are to improve our ability to express requirements-related 
models (in the sense of unified modeling language (UML) scenarios and use cases), to reason about those 
models (in the sense of the Massachusetts Institute of Technology’s Alloy), and to facilitate traceability 
with respect to architecture and implementation (correspondence measures). Requirements engineering 
is fundamentally about the transition from informal human expression to explicit structured represen-
tations. Any incremental improvement in formality that doesn’t compromise overall expressiveness or 
efficiency of operation has the potential to make a big difference with respect to these goals.

Related to this goal is the development of improved domain-specific models and methods that per-
tain to critical defense domains such as control systems, command and control, large-scale information 
management, and many others.

Goal 4.2: Support Traceability and Early Validation

Traceability is more readily achieved when the feature-driven model is adopted, but this is not 
always readily applicable to defense systems. Research on requirements expression will result in 
improvements to models, tooling, and early validation practices (e.g., prototyping and simulation). As 
part of this effort, it is essential to also address traceability issues, because these have a profound influ-
ence on assurance and validation generally. 

Goal 4.3: Process Support for Stakeholder Engagement and Model Development

Stakeholders in large projects may come from diverse perspectives and may have diverse interests. 
The requirements can often appear to be a negotiation among stakeholders regarding the significance of 
various functional features and quality attributes. This creates a challenge of avoiding both over-com-
mitment (e.g., through negotiation) to particular characteristics as well as under-commitment. What 
modeling mechanisms, processes, and tools can be developed to assist stakeholders in identifying goals 
and models, and in managing not just what is committed to, but also how much commitment is made? 
This is particularly critical in incremental and iterative development projects.

Area 5.  Language, Modeling, Coding, and Tools

As noted in the previous chapters, programming languages and associated capabilities have a 
considerable influence on the major factors identified in this report—architecture, assurance, process, 
and measurement. For example, programming language improvements have influence on the ability 
of architects to achieve goals related to system structure and modularity. More generally, programming 
languages are the medium by which human developers convey their intent both to the computer and to 
other developers. As such, a programming language both constrains what a developer can say and at the 
same time encourages particular styles of expression. As noted in the previous chapters, programming 
language design has considerable influence on the major factors identified in this report—architecture, 
assurance, process, and measurement. For example, programming language improvements have influ-
ence on the ability of architects to enforce goals related to system structure and modularity. Modularity 
is much more than a matter of control and data flow. There are abstractions related to objects, types, and 
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actions that are increasingly supported in modern languages, and these enable developers to express 
domain concepts more directly in program text. They also enable architects to render their abstract 
models for system modular structures more directly into the explicit structure of programs.

Modularity is much more than a matter of control and data flow; there are abstractions related to 
objects, types, and actions that are increasingly supported in modern languages, and these not only 
enable developers to express domain concepts more directly in program text26 but also enable architects 
to render their abstract models for system modular structures more directly into the explicit structure 
of programs. 

Goal 5.1: Enhance the Expressiveness of Programming Language to Address  
Current and Emerging Challenges

Despite many declarations of success, the evolution of programming languages continues, and it is 
driven by strong demand for improvements from developers seeking greater levels of expressiveness 
(e.g., through direct expression of concepts such as higher-order functions,27 deterministic parallelism, 
atomicity, data permissions, and so on), improved ability to support particular domains (either through 
direct expression as intrinsics or through the ability to provision appropriate libraries and frameworks), 
improved flexibility for developers (e.g., dynamic languages that compromise less static checking for 
a more rapid iterative development model, but with more risk of unwanted runtime errors), improved 
a priori assurance (e.g., through the simultaneous development of code, specifications, and associated 
proofs for assurance), and improved access to scalable performance (e.g., through intrinsics such as 
Generate/MapReduce that support data-intensive computing in microprocessor clusters). 

Goal 5.2: Enhance Ability to Exploit Modern Concurrency, Including 
Shared Memory Multicore and Scalable Distributed Memory

For the past 30 years, as a consequence of the steady improvements in processor design, software 
developers have been given a doubling in performance every year and a half, adding up to a million-
fold improvement in three decades. Over that period, the same code ran faster on the new chips. In the 
past few years, processor clock speeds have topped out; there are now multiple processors on a chip, 
and chip designers continue to provide the expected performance improvement, but only in a potential 
way and accessible only to those software developers who can harness the power of multiple proces-
sors. Suddenly, everything has to be “done by committee”—by multiple threads of control coordinating 
together to get the work done. It is said that Moore’s Law has given way to Amdahl’s Law. To make 
matters more difficult, the ability of multiple threads to access shared state in memory does not scale 

26 In the early days of Fortran, for example, the only data types in the language were numbers and arrays of various dimension-
alities. Any program that manipulated textual data, for example, needed to encode the text characters, textual strings, and any 
overarching paragraph and document structure very explicitly into numbers and arrays. A person reading program text would 
see only numerical and array operations, because that was the limit of what could be expressed in the notation. This meant that 
programmers needed to keep track, in their heads or in documentation, of the nature of this representational encoding. It also 
meant that testers and evaluators needed to assess programs through this (hopefully) same layer of interpretation. With modern 
languages (including more modern Fortran versions), these structures can be much more directly expressed—characters and 
strings are intrinsic in nearly all modern languages. This is a simple illustrative example, but the point remains: There are concepts 
and structures in domains significant to defense that, in modern languages, must be addressed through similar representational 
machinations. This is a part of the “endless value spiral” argument of Chapter 1, and it explains why we should not expect any 
plateau in the evolution of programming languages, models, and other problem-relevant expressive notations. Indeed, it is why 
language names such as “Fortran” and “Ada” have the staying power of strong brands, even when the specific languages to 
which they refer are evolving quite rapidly (for example, Ada83 to Ada95 and thence to Ada 2005). 

27 An example is Microsoft’s F#, which builds on two decades of work on advanced functional languages such as Standard 
ML and Haskell. Another example is Sun’s Fortress language, which builds on a combined heritage of functional programming, 
deterministic parallelism, and numerical computation.
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up—it must eventually be supplanted by distributed models, with information shared using message 
passing. This hybrid approach, combined with a distributed approach to scalable storage, is the reality 
of many modern high-performance data centers.28

Software developers, language designers, and tool developers are still struggling to figure out how 
to harness the concurrency in a way that works well for software development. What are the correct 
abstractions? What are suitable concepts for data structures? How can assurance be achieved when 
programs operate in non-deterministic fashion? This provisioning of modern computing power is a 
major challenge for language designers and tool designers.

Goal 5.3: Enhance Developer Productivity for New Development and Evolution

As noted above, languages enhanced with models and tools often merge into new languages that 
incorporate the model concepts directly in the language design. But there is a growing suite of tool capa-
bilities that are conceptually separate from language, and the delivery of these capabilities is a significant 
influence on developer and team productivity and on software producibility generally. Modern tools 
such as the open source Eclipse (created by IBM29) and Microsoft’s Visual Studio environment for “man-
aged code” provide rich features to support application development generally. They also have tailored 
support for development within certain ecosystems, such as the Visual Studio support for web applica-
tions developed within the Microsoft Asp.NET framework. Individual developer tools are often linked 
with team capabilities, which include configuration management of code and related artifacts, defect and 
issue tracking and linking, build and test support, and management of team measures and processes. 
This linkage greatly empowers small teams and, increasingly, larger development organizations.

Area 6. Cyber-Physical Systems

DoD systems are increasingly operating in large-scale, network-centric configurations that take input 
from many remote sensors and provide geographically dispersed operators with the ability to interact 
with the collected information and to control remote effectors. In circumstances where the presence 
of humans in the loop is too expensive or their responses are too slow, these so-called cyber-physical 
systems must respond autonomously and flexibly to both anticipated and unanticipated combinations 
of events during execution. Moreover, cyber-physical systems are increasingly being networked to form 
long-lived systems of systems—and even ultra-large-scale systems30—that must run unobtrusively and 
largely autonomously, shielding operators from unnecessary details (but keeping them apprised so they 
can react during emergencies), while simultaneously communicating and responding to mission-critical 
information at heretofore infeasible rates.

Cyber-physical systems are increasingly critical in defense applications of all kinds and at all levels 
of scale, including distributed resource management in shipboard defense systems, coordinating groups 
of unmanned air vehicles, and controlling low-power sensors in tactical urban environments. These are 
systems with very close linkage of hardware sensors and effectors with software control. They are often 
structured as control systems, but also can involve multiple complex interacting control systems, such 
as in deconflicting multiple call-for-fire requests in a crowded battlespace consisting of joint services 
and coalition partners.

One critical area of concern is the creation and validation of the cyber-physical stack. For example, 

28 These issues are the focus of a forthcoming report from the National Research Council, The Future of Computing Performance: 
Game Over or Next Level?, Samuel Fuller and Lynette Millett, eds., Washington, DC: National Academies Press, forthcoming.

29  Siobhan O’Mahony, Fernando Cela Diaz, and Evan Mamas, 2005, “IBM and Eclipse (A),” Harvard Business School Case 
906007, Cambridge, MA: Harvard University Press.

30  Software Engineering Institute, 2006, Ultra-Large-Scale Systems: The Software Challenge of the Future, Pittsburgh, PA: Carnegie 
Mellon University. Available online at http://www.sei.cmu.edu/library/assets/ULS_Book20062.pdf. Last accessed August 20, 
2010.
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how to evolve the development of distributed real-time and/or embedded systems from a cottage craft 
that does not generally yield scalable or readily assurance solutions to a more robust approach guided 
by model-integrated computing, domain-specific languages and analysis tools, and control-theoretic 
adaptation techniques. This is a significant challenge for language and platform design, ecosystem 
development, tool design, and practices.31 

Another challenge facing the DoD is how to routinize and automate more of the development of 
embedded cyber-physical control systems. There are particular challenges related to scalability, predict-
ability, and evolvability of systems. Assurance is also a major issue, and it is exacerbated by the lack of 
ability to reliably connect models with code and with the various components in the current generation 
of embedded software stack, which are typically optimized for time/space utilization and predictability, 
rather than ease of understanding, analysis, composition, scalability, and validation.

Yet another challenge facing DoD cyber-physical systems—particularly net-centric cyber-physical 
systems—is how to handle variability and control adaptively and robustly. Cyber-physical systems 
today often work well as long as they receive all the resources for which they were designed in a timely 
fashion, but fail completely under the slightest anomaly. There is little flexibility in their behavior, that 
is, most of the adaptation is pushed to end users or administrators. Instead of hard failure or indefinite 
waiting, what net-centric cyber-physical systems require is either reconfiguration to reacquire the needed 
resources automatically or graceful degradation if they are not available.

Goal 6.1: Accelerate Ecosystem Development for Cyber-Physical Systems

Today, it is too often the case that substantial effort expended to develop cyber-physical systems 
focuses on either (1) building ad hoc solutions based on tedious and error-prone low-level platforms and 
tools or (2) cobbling together functionality missing in off-the-shelf real-time and embedded operating 
systems and middleware. As a result, subsequent composition and validation of these ad hoc capabilities 
is either infeasible or prohibitively expensive. One reason why redevelopment persists is that it is still 
often relatively easy to pull together a minimalist ad hoc solution, which remains largely invisible to all 
except the developers and testers. Unfortunately, this approach yields brittle, error-prone systems and 
substantial recurring downstream ownership costs, particularly for complex and long-lived network-
centric DoD systems and larger-scale systems-of-systems.

One of the most immediate goals is therefore to accelerate ecosystem development for cyber-physi-
cal systems. There has been considerable exploration of this area in a multi-agency setting under the 
auspices of the NITRD coordination activity (see Box 1.5), and there are benefits to linking it with other 
efforts related to software producibility. There are opportunities to exploit and advance modern language 
concepts, innovative operating system and middleware ideas, scheduling and resource management 
techniques, and code generation capabilities. 

Achieving this goal will require new cyber-physical system software architectures whose component 
functional and quality-of-service (QoS) properties can be expressed with sufficient precision (e.g., via 
the use of model-integrated computing techniques and domain-specific languages and tools) that they 
can be predictably assembled with each other, leaving less lower-level complexity for application devel-
opers to address and thereby reducing system development and ownership costs. In particular, cyber-
physical system ecosystems must not simply build better device drivers, operating system schedulers, 

31 This challenge was discussed in the committee’s 2007 workshop report. See NRC, 2007, Summary of a Workshop on Software-
Intensive Systems and Uncertainty at Scale, Washington, DC: National Academies Press. Available online at http://www.nap.edu/
catalog.php?record_id=11936. Last accessed August 20, 2010. It has also been explored in the NRC report Software for Dependable 
Systems: Sufficient Evidence? See NRC, Daniel Jackson, Martyn Thomas, and Lynette I. Millett, eds., 2007, Software for Dependable 
Systems, Sufficient Evidence? Washington, DC: National Academies Press. Available online at http://www.nap.edu/catalog.
php?record_id=11923. Last accessed August 20, 2010. It has been the subject of a series of workshops under the auspices of the 
NITRD HCSS area sponsored by NSF and other agencies. For more information see http://www.nitrd.gov/subcommittee/hcss.
aspx. Last accessed August 20, 2010.
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or middleware brokers in isolation, but rather integrate these capabilities together and deliver them to 
applications in ways that enable them to achieve fine-grained tradeoffs between key QoS properties, 
such as throughout, latency, jitter, scalability, security, and reliability. 

Key R&D breakthroughs needed to meet the goal of accelerating ecosystem development for cyber-
physical systems involve devising new languages and platforms that enable users and operators to 
clearly understand the QoS requirements and usage patterns of software components so it becomes 
possible to analyze whether or not these requirements are being (or even can be) met and to aggregate 
these requirements, making it possible to form decisions, policies, and mechanisms that can support 
effective global management in net-centric environments. Meeting these needs will require flexibility 
on the parts of both the application components and the cyber-physical system infrastructure ecosystem 
used throughout DoD systems. 

Goal 6.2: Develop Architectures and Software Frameworks to Support Embedded Applications

Embedded cyber-physical systems can operate robustly in harsh environments through careful coor-
dination of a complex network of sensors and effectors. Given the increasing complexity of emerging 
DoD embedded cyber-physical systems, such fine-tuned coordination is ordinarily a nearly impossible 
task, both conceptually and as a software engineering undertaking. Model-based software development 
uses models of a system to capture and track system requirements, automatically generate code, and 
semi-automatically provide tests or proofs of correctness. Models can also be used to build validation 
proofs or test suites for the generated code. 

Model-based software development removes much of the need for fine-tuned coordination, by 
allowing programmers to read and set the evolution of abstract state variables hidden within the physical 
system. For example, a program might state, “produce 10.3 seconds of 35% thrust,” rather than specify 
the details of actuating and sensing the hardware (e.g., “signal controller 1 to open valve 12,” and “check 
pressure and acceleration to confirm that valve 12 is open”). Hence a model-based program constitutes 
a high-level specification of intended state evolutions. To execute a model-based program an interpreter 
could use a model of a controlled plant to continuously deduce the plant’s state from observations and 
to generate control actions that move the plant to specified states.

Achieving the goal of model-based embedded software development requires new expressive 
languages for specifying intended state evolutions and plant behavior, automated execution methods 
for performing all aspects of fine-grained coordination, and software architectures and frameworks for 
pervasive/immersive sensor networks. Key R&D breakthroughs needed to meet the goal of developing 
architectures and software frameworks to support embedded applications include closing the consis-
tency gap between model and code, preserving structural design features in code, translating informal 
requirements into formal requirements, tracing requirements into implementation, integrating dispa-
rately modeled submodels, and enriching formalisms that support QoS properties, as well as techniques 
that support rapid reconfiguration and reliability with unreliable components.

Goal 6.3: Develop and Validate Technologies That Support Both Variability 
and Control in Net-Centric Cyber-Physical Systems

As DoD cyber-physical systems become increasingly interconnected to form net-centric systems of 
systems it is becoming clear that (1) different levels of service are possible and desirable under different 
conditions and costs and (2) the level of service in one property must be coordinated with and/or traded 
off against the level of service in others to achieve the intended mission results. To date, little work has 
focused on techniques for controlling and trading off the overall behavior of these integrated net-centric 
cyber-physical systems. Another key goal is therefore to develop and validate new technologies that 
support both variability and control in net-centric cyber-physical systems.

Achieving this goal will require devising new adaptive and reflective software technologies, recog-
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nizing that not all requirements can be met all of the time, yet still ensuring predictable and controllable 
end-to-end behavior. In adaptive software technologies, the functional and QoS-related properties of 
cyber-physical software can be modified either statically (e.g., to reduce footprint, leverage capabilities 
that exist in specific platforms, enable functional subsetting, and minimize hardware/software infra-
structure dependencies) or dynamically (e.g., to optimize system responses to changing environments or 
requirements, such as changing component interconnections, power levels, CPU/network bandwidth, 
latency/jitter, and dependability needs). 

Reflective software technologies go further to permit automated examination of the capabilities 
they offer and automated adjustment to optimize those capabilities. Reflective techniques make the 
internal organization of systems—as well as the mechanisms used in their construction—both visible 
and manipulable for application and infrastructure programs to inspect and modify at runtime. Reflec-
tive technologies thus support more advanced adaptive behavior and more dynamic strategies keyed 
to current circumstances, that is, necessary software adaptations can be performed autonomously based 
on conditions within the system, in the system’s environment, or in system QoS policies defined by 
operators. 

Key R&D breakthroughs needed to meet the goal of developing and validating adaptive and reflec-
tive software for net-centric cyber-physical systems involve investigating ways to make such modifica-
tions dependably (e.g., while meeting stringent—often conflicting—end-to-end QoS requirements) while 
simultaneously ensuring that the system functional requirements are met.

Area 7. Human-Systems Integration

It is significant that most large-scale complex enterprise systems include fallible humans as con-
stituent elements, but there has been a lack of design practices, including architecture concepts and 
development processes, that account for the ways in which humans integrate into systems as partici-
pants. Human-systems integration (HSI) is about much more than the colors of pixels and the design 
of graphical user integration frameworks. The presence of humans in a system, such as pilots in an 
airplane, fundamentally affects the design and architecture of that system.

This issue was the subject of a separate NRC report32 and is not elaborated upon here except to 
emphasize some of its software-related recommendations:

•	 Conduct a research program with the goal of revolutionizing the role of end users in designing 
the system they will use.

•	 Conduct research to understand the factors that contribute to system resilience, the role of people 
in resilient systems, and how to design more resilient systems.

•	 Refine and coordinate the definition of a systems development process that concurrently engi-
neers the system’s hardware, software, and human factors aspects, and accommodates the emergence 
of HSI requirements, such as the incremental commitment model.

•	 Research and develop shared representations to facilitate communication across different disci-
plines and lifecycle phases.

•	 Research and develop improved methods and testbeds for systems-of-systems HSI.
•	 Research and develop improved methods and tools for integrating incompatible legacy and 

external-system user interfaces.

32  See NRC, 2007, Human-System Integration in the System Development Process: A New Look, Washington, DC: National Academies 
Press, Available online at http://www.nap.edu/openbook.php?record_id=11893. Last accessed August 20, 2010.
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Summary Findings and Recommendations

Finding 5-2: Technology has a significant role in enabling modern incremental and iterative software 
development practices at levels of scale ranging from small teams to large distributed development 
organizations.

Recommendation 5-1: The DoD should take immediate action to reinvigorate its investment in soft-
ware producibility research. This investment should be undertaken through a diversity of research 
programs across the DoD and should include academia, industry labs, and collaborations.

Recommendation 5-2: The DoD should take action to undertake DoD-sponsored research programs 
in the following areas identified as critical to the advancement of defense software producibility: 
(1) architecture modeling and architectural analysis; (2) assurance: validation, verification, analysis 
of design and code; (3) process support and economic models for assurance and adaptability; (4) 
requirements; (5) language, modeling, coding, and tools; (6) cyber-physical systems; and (7) human-
systems integration. 
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from the University of California, Los Angeles, in 1961 and 1964, all in mathematics; and an honorary 
SC.D. degree from the University of Massachusetts in 2000 in computer science. 

Lori A. Clarke is a professor of computer science at the University of Massachusetts, Amherst, and 
co-director of the Laboratory for Advanced Software Engineering Research. She is an ACM Fellow 
and a board member of CRA-W. She is a former IEEE Distinguished Visitor, ACM National Lecturer, 
IEEE Publication Board member, associate editor of ACM TOPLAS and IEEE TSE, member of the CCR 
NSF advisory board, ACM SIGSOFT secretary/treasurer, vice-chair and chair, vice-chair of CRA, and 
co-chair of CRA-W, as well as a 1990 recipient of the University of Massachusetts Chancellor’s Medal 
and a 1993 recipient of a University Faculty Fellowship. Dr. Clarke has worked in the area of software 
engineering, particularly on software analysis and testing for many years. She was one of the primary 
developers of symbolic execution, a technique used to reason about the behavior of software systems and 
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for selecting test data, and she has made contributions in the areas of software architecture and object 
management. Recently her work has focused on analysis of concurrent systems. With colleagues, she 
developed FLAVERS, a static analysis tool that uses data-flow analysis to verify user-specified properties 
of concurrent systems, and PROPEL, a system that complements FLAVERS and other model checking 
systems by helping users elucidate the details of the properties to be proven. She received her B.A. in 
mathematics (1969) from the University of Rochester and her Ph.D. degree in computer science (1976) 
from the University of Colorado.

Michael A. Cusumano is the Sloan Management Review Distinguished Professor of Management at 
the Massachusetts Institute of Technology’s Sloan School of Management, with a joint appointment in 
MIT’s Engineering Systems Division. He received a B.A. degree from Princeton in 1976 and a Ph.D. from 
Harvard in 1984, and completed a postdoctoral fellowship in production and operations management 
at the Harvard Business School during 1984-1986. He has received two Fulbright Fellowships as well as 
a Japan Foundation Fellowship for study at the University of Tokyo. He is currently a director of Patni 
Computer Systems, one of the largest IT services and custom software development firms based in India 
(NYSE: PTI), and Eliza Corporation, a specialist in speech recognition software applications, focused on 
healthcare. He is on the advisory board of FixStars Corp., a Japanese developer of high-performance com-
puting applications. Professor Cusumano was named one of the most influential people in technology and 
IT by Silicon.com in 2009. He has consulted for approximately 100 firms and organizations around the 
world and is the author or co-author of 9 books. His newest book, Staying Power: Six Enduring Principles 
for Managing Strategy and Innovation in an Uncertain World (2010), is based on the 2009 Clarendon Lectures 
in Management Studies at Oxford University. The Software Business (2004) was named one of the top busi-
ness books of the year by Steve Lohr of the New York Times. The international best-seller Microsoft Secrets 
(1995, with Richard Selby) has been translated into 14 languages. Competing on Internet Time: Lessons from 
Netscape and Its Battle with Microsoft (1998, with David Yoffie) was named a top-10 book of the year by Busi-
ness Week. In addition, he has published Platform Leadership: How Intel, Microsoft, and Cisco Drive Industry 
Innovation (2002, with Annabelle Gawer); Thinking Beyond Lean: Multi-Project Management at Toyota and 
Other Companies (1998, with Kentaro Nobeoka); Strategic Thinking for the Next Economy (2001, with Costas 
Markides); Japan’s Software Factories (1991); and The Japanese Automobile Industry (1985).

Mary Ann Davidson is the chief security officer at Oracle Corporation, responsible for Oracle product 
security, as well as security evaluations, assessments, and incident handling.  She represents Oracle on 
the board of directors of the Information Technology Information Security Analysis Center (IT-ISAC), 
and the editorial advisory board of SC Magazine. She was named one of Information Security’s top five 
“Women of Vision” and is a 2004 Fed100 award recipient from Federal Computer Week. She has served 
on the Defense Science Board and is a member of the Center for Strategic and International Studies 
Cyber Commission for the 44th President. She was recently named to the Information Systems Security 
Association Hall of Fame. She has also testified on the issue of cybersecurity to the U.S. House of Rep-
resentatives (Energy and Commerce Committee, Armed Services Committee, and Homeland Security 
Subcommittee on Cybersecurity, Emerging Threats and Science and Technology) and the U.S. Senate 
(Commerce, Science and Technology Committee). Ms. Davidson has a B.S.M.E. from the University of 
Virginia and an M.B.A. from the Wharton School of the University of Pennsylvania. She has also served 
as a commissioned officer in the U.S. Navy Civil Engineer Corps, during which she was awarded the 
Navy Achievement Medal.

Larry Druffel is director emeritus and visiting scientist at the Software Engineering Institute at Carnegie 
Mellon University, where he was the director from 1986 to 1996.  From 1996 to 2006, he was president 
and CEO of SCRA, a public, non-profit research and development corporation engaged in the applica-
tion of advanced technology. He is a member of the board of directors of Teknowledge Corporation. He 
was vice president for business development at Rational Software from 1983 to 1986 and served on the 
board of directors of Rational from 1986 to 1995. Dr. Druffel was on the faculty at the USAF Academy. 
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He later managed research programs in advanced software technology at DARPA. He was founding 
director of the Ada Joint Program Office, and then served as director of Computer Systems and Software 
(Research and Advanced Technology) in the Office of the Secretary of Defense. He is the co-author of a 
computer science textbook and over 35 professional papers, including the chapter titled “Information 
Warfare” for the ACM Fiftieth Anniversary Book Beyond Computing. He has a B.S. in electrical engi-
neering from the University of Illinois, an M.Sc. in computer science from the University of London, 
and a Ph.D. in computer science from Vanderbilt University. Dr. Druffel is a fellow of the IEEE, and a 
fellow of the ACM. He has served on engineering advisory boards of the University of South Carolina, 
Clemson, and Embry Riddle University.  Dr. Druffel chaired the AF Science Advisory Board Study on 
Information Architecture and co-chaired the Defense Science Board study on acquiring defense software 
commercially. He led the Defensive Information Warfare Panel for the AFSAB “New World Vistas.” He 
has served on numerous AFSAB, DSB, and NRC studies dealing with the use of information technol-
ogy, including the National Research Council study Engineering Challenges to the Long-Term Operation of 
the International Space Station.

Russell Frew is the vice president, CTO in the $17 billion Lockheed Martin, Electronic Systems Business 
Unit (ES). In this capacity he oversees both technology development and the program performance of 
over 18,000 engineers and 1400 programs. He is frequently called upon to lead engineering assistance 
teams that engage major programs across the corporation. In his capacity as the chief technical officer, 
he is also responsible for technology strategy and the investment plan. Additionally, Mr. Frew has 
executive responsibility for the LM Advanced Technology Laboratories in Cherry Hill, NJ. From 1999 
to late 2003, Mr. Frew was on special assignment for the corporation. His duties made him the focal 
point between ES and Aeronautics business areas. In this capacity he led major program teams work-
ing issues on the F-22’s avionics, the F-35 Joint Strike Fighter’s Mission System, and the F-16 Advanced 
Mission Computer. As part of the COTS revolution, Mr. Frew authored and led the Lockheed Martin 
Proven Path electronics program. Originally conceived as an LM strategy for JSF, Proven Path evolved 
into an engineering discipline now being widely applied across fighter aircraft, Army missiles, and Navy 
ships. Prior to his appointment as vice president, Advanced Technology for MS2 in 1999, Frew spent 18 
months as vice president, Technology for Government Electronics Systems (GES) in Moorestown, NJ. 
While with GES he managed technology programs such as COMBATS, which successfully introduced 
modular, object-oriented software for modern ship combat systems. From June 1996 to March 1997, 
Frew was the managing director of the Lockheed Martin Corp. Advanced Technology Laboratories—an 
applied research facility that develops advanced technology hardware and software solutions for varied 
defense applications. Prior to 1996, Mr. Frew managed the General Electric Aerospace, Artificial Intel-
ligence lab for 8 years. There he oversaw activities in anti-submarine warfare, attack helicopter sensor-
based reasoning, expert systems, and real-time embedded architectures. He succeeded in getting the 
Sea Shadow prototype stealth ship operational and then used this platform to test numerous technology 
concepts in a fully operational environment at sea with the U.S. Navy. In 1985 the Defense Advanced 
Research Projects Agency (DARPA) selected him as one of the original program managers on the national 
Strategic Computing program DARPA initiated to meet Japan’s Fifth Generation challenge. Mr. Frew 
holds graduate and undergraduate degrees. He has served as a study panel member at the National 
Academy of Sciences and on the University of Pennsylvania School of Engineering and Applied Science 
Advisory Board. He additionally spent 4 years as an ISAT board member and study lead for the director 
of DARPA. Mr. Frew currently serves as the chairman of the board for Technology Ventures Corp. (TVC) 
and formerly served as a director on the board of the ISX Corporation. A lifelong pilot, Mr. Frew holds 
a commercial pilot’s license with ratings in numerous single and multiengine aircraft. 

James Larus, director of the eXtreme Computing Group (XCG) in Microsoft Research, has been an 
active contributor to the programming languages, compiler, and computer architecture communities. He 
has published many papers and served on numerous program committees and NSF and NRC panels. 
Dr. Larus became an ACM Fellow in 2006. He joined Microsoft Research as a senior researcher in 1998 
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to start and, for 5 years, led the Software Productivity Tools (SPT) group, which developed and applied 
a variety of innovative techniques in static program analysis and constructed tools that found defects 
(bugs) in software. This group’s research has had considerable impact on the research community, as 
well as being shipped in Microsoft products such as the Static Driver Verifier and FX/Cop and other, 
widely used internal software development tools. Dr. Larus then became the research area manager for 
programming languages and tools and started the Singularity research project, which demonstrated that 
modern programming languages and software engineering techniques could fundamentally improve 
software architectures. Subsequently, he helped start XCG, which is developing the hardware and soft-
ware to support cloud computing. Before joining Microsoft, Larus was an assistant and associate profes-
sor of computer science at the University of Wisconsin-Madison, where he published approximately 60 
research papers and co-led the Wisconsin Wind Tunnel (WWT) research project with Professors Mark 
Hill and David Wood. WWT was a DARPA- and NSF-funded project that investigated new approaches 
to simulating, building, and programming parallel shared-memory computers. Larus’s research spanned 
a number of areas, including new and efficient techniques for measuring and recording executing pro-
grams’ behavior, tools for analyzing and manipulating compiled and linked programs, programming 
languages for parallel computing, tools for verifying program correctness, and techniques for compiler 
analysis and optimization. Larus received his M.S. and Ph.D. in computer science from the University 
of California, Berkeley in 1989, and an A.B. in applied mathematics from Harvard in 1980. At Berkeley, 
Larus developed one of the first systems to analyze Lisp programs and determine how to best execute 
them on a parallel computer.

Greg Morrisett is the Allen B. Cutting Professor of Computer Science at Harvard University. His current 
research interests are in the applications of programming language technology for building secure and 
reliable systems. In particular, he is interested in applications of advanced type systems, model checkers, 
certifying compilers, proof-carrying code, and inline reference monitors for building efficient and prov-
ably secure systems. He is also interested in the design and application of high-level languages for new 
or emerging domains, such as sensor networks. Dr. Morrisett received his B.S. degree in mathematics 
and computer science from the University of Richmond (1989) and his Ph.D. degree in computer science 
from Carnegie Mellon University (1995). He spent about 7 years on the faculty of the Computer Science 
Department at Cornell University. In the 2002-2003 academic year, he took a sabbatical at Microsoft’s 
Cambridge Research Laboratory. In January of 2004, he moved to Harvard University.

Walker Royce is vice president and chief software economist at IBM Software Group. Mr. Royce has man-
aged large software engineering projects, consulted with a broad spectrum of IBM’s worldwide customer 
base, and developed software management approaches that exploit an iterative lifecycle, industry best 
practices, and architecture-first priorities. He is the author of two books: Software Project Management, A 
Unified Framework (Addison Wesley, 1998) and The Economics of Software Development (Addison Wesley, 
2009). From 1994 through 2009, Mr. Royce was the vice president and general manager of IBM’s World-
wide Rational Services organization and led a team of 500 technical specialists in software delivery best 
practices and $100 million in consulting services. Before joining Rational/IBM, Mr. Royce spent 16 years 
in software project development, software technology development, and software management roles 
at TRW Electronics & Defense. He was a recipient of TRW’s Chairman’s Award for Innovation for his 
contributions in distributed architecture middleware and iterative software processes in 1990 and was 
named a TRW Technical Fellow in 1992. He received his B.A. in physics from the University of California 
and his M.S. in computer information and control engineering from the University of Michigan, and he 
completed 3 years of further study in computer science at UCLA.

Doug C. Schmidt is the deputy director, Research, and chief technology officer at Carnegie Mellon 
University’s Software Engineering Institute. He was previously a professor at Vanderbilt University, 
University of California, Irvine, and Washington University St. Louis. He also served as chief technol-
ogy officer for Zircon Computing and Prism Technologies, where he was responsible for the companies’ 
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technical vision, strategic directions, and growth. In addition, Dr. Schmidt served as a deputy office 
director and a program manager at DARPA, where he led the national R&D effort on middleware for 
DRE systems and was the co-chair for the Software Design and Productivity (SDP) Coordinating Group 
of the U.S. government’s multi-agency Information Technology Research and Development (IT R&D) 
Program, which formulated the multi-agency software research agenda. Dr. Schmidt has published 9 
books and over 450 technical papers that cover a range of research topics, including patterns, optimiza-
tion techniques, and empirical analyses of software frameworks and domain-specific modeling environ-
ments that facilitate the development of distributed real-time and embedded (DRE) middleware and 
applications running over high-speed networks and embedded system interconnects. In addition to his 
government service, academic research, and commercial experience, Dr. Schmidt has two decades of 
experience leading the development of ACE, TAO, CIAO, and CoSMIC, which are widely used, open-
source DRE middleware frameworks and model-driven tools that contain a rich set of components and 
domain-specific languages that implement patterns and product-line architectures for high-performance 
DRE systems. These technologies have been used successfully by thousands of developers at hundreds of 
companies worldwide on projects involving medical engineering systems, financial services, datacom/
telecom systems, national defense and security systems, and online gaming. Dr. Schmidt has Ph.D. and 
M.S. degrees in computer science from the University of California, Irvine, and M.A. and B.A degrees 
in sociology from the College of William and Mary, Williamsburg, VA.

John P. Stenbit is an independent consultant. He recently served as assistant secretary of defense for 
networks and information integration and as the DoD’s chief information officer. Mr. Stenbit has had 
a career that spans more than 30 years of public- and private-sector service in telecommunications and 
command and control. In addition to his recent service, his public service includes 2 years as principal 
deputy director of telecommunications and command and control systems, and 2 years as staff specialist 
for worldwide command and control systems, both in the Office of the Secretary of Defense. Mr. Stenbit 
previously was executive vice president at TRW, retiring in May 2001. He joined TRW in 1968 and was 
responsible for the planning and analysis of advanced satellite surveillance systems. Prior to joining 
TRW, he held a position with the Aerospace Corporation involving command-and-control systems for 
missiles and satellites, and satellite data compression and pattern recognition. During this time, he was a 
Fulbright Fellow and Aerospace Corporation Fellow at the Technische Hogeschool, Einhoven, the Neth-
erlands, concentrating on coding theory and data compression. He has served on numerous scientific 
boards and advisory committees, including as chair of the Science and Technology Advisory Panel to 
the Director of Central Intelligence and as a member of the Science Advisory Group to the Directors of 
Naval Intelligence and the Defense Communications Agency. He is a member of the National Academy 
of Engineering.

Kevin J. Sullivan is an associate professor and a Virginia Engineering Foundation (VEF) Endowed 
Faculty Fellow in computer science at the University of Virginia, where he has worked since 1994. His 
research interests are mainly in software engineering and languages. He has served as associate editor 
for the Journal of Empirical Software Engineering and the ACM Transactions on Software Engineering and 
Methodology and on the program and executive committees of conferences including the ACM SIGSOFT 
Symposium on the Foundations of Software Engineering (FSE), the International Conference on Software 
Engineering (ICSE), Aspect-Oriented Software Development (AOSD), and the ACM SIGPLAN-SIGACT 
Symposium on Principles of Programming Languages (POPL). He and his students are broadly inter-
ested in the design and engineering of software-intensive systems, with an emphasis on the need for 
a value-based theory and practice of system design. Dr. Sullivan received his undergraduate degree 
from Tufts University in 1987 and M.S. and Ph.D. degrees in computer science and engineering from 
the University of Washington in 1994.
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